Skip to content

Build a decentralized AI infrastructure on Solana, enabling secure on-chain model training and creating a global marketplace for AI inference services.

Notifications You must be signed in to change notification settings

Umazen/Umazen-AI

Repository files navigation

Umazen: Decentralized AI Infrastructure on Solana

License Solana Version Discord

Production-Grade Framework for On-Chain AI Model Training & Inference Markets

Build a decentralized AI infrastructure on Solana, enabling secure on-chain model training and creating a global marketplace for AI inference services

🐦 Follow us on Twitter

Table of Contents

Architecture Overview

%% Architecture Diagram for Umazen
graph TD
    subgraph Blockchain Layer
        SP[Solana Programs] -->|Program Instructions| MR(Model Registry)
        SP -->|State Management| VM[Verification Market]
        SP -->|Settlement| PM[Payment Module]
        MR -->|Hash Storage| IPFS[(IPFS Cluster)]
        VM -->|Proof Verification| ZK[ZK Proof Verifier]
    end

    subgraph AI Infrastructure Layer
        FL[Federated Learning Engine] -->|Aggregated Updates| MR
        FL -->|Differential Privacy| DP[Privacy Engine]
        ZK[ZK Provers] -->|Proof Generation| VM
        IM[Inference Market] -->|Resource Allocation| KC[Kubernetes Cluster]
        KC -->|GPU Orchestration| GPU([NVIDIA GPUs])
        DP -->|Secure Aggregation| SA[Secure Aggregator]
    end

    subgraph Client Layer
        UI[Web Interface] -->|User Operations| SP
        UI -->|Model Visualization| TS[TypeScript SDK]
        TS -->|API Calls| BE[Backend Services]
        BE -->|Training Jobs| FL
        BE -->|Inference Requests| IM
        PY[Python SDK] -->|Local Training| FL
        PY -->|Model Submission| MR
    end

    classDef solana fill:#14f195,color:#000;
    classDef ai fill:#7e57c2,color:#fff;
    classDef client fill:#2196f3,color:#fff;
    
    class SP,MR,VM,PM solana;
    class FL,ZK,IM,DP,SA,KC ai;
    class UI,TS,PY,BE client;

Loading

The system comprises three core layers:

  1. Blockchain Layer

    • Solana Program Modules
    • On-Chain Model Registry
    • Proof Verification System
  2. AI Infrastructure Layer

    • Federated Learning Engine
    • ZKML Proof Generation
    • Distributed Inference Nodes
  3. Client Layer

    • TypeScript SDK
    • Python Training Toolkit
    • React Web Interface

Key Features

Core Capabilities

  • 🧠 On-Chain Model Training

    • Federated Learning with Cryptographically Verified Updates
    • Privacy-Preserving Training via Secure Aggregation
    • Model Version Control with Merkleized Snapshots
  • Inference Marketplace

    • Real-Time Bidding System for Compute Resources
    • ZK-Proof Verified Inference Results
    • Multi-Currency Payment Support
  • 🔒 Security Framework

    • Role-Based Access Control (RBAC)
    • Model Integrity Proofs using Poseidon Hashes
    • Encrypted Model Weights Storage

Advanced Functionality

  • Parallelized Proof Generation using CUDA
  • Automated Model Quantization (FP32 → INT8)
  • Cross-Chain Verification Bridges
  • Dynamic Pricing Oracle for Compute Resources
  • GPU-Optimized Training Pipelines

Getting Started

Prerequisites

System Requirements

  • x86_64 Architecture (AVX2 Support Required)
  • NVIDIA GPU (Compute Capability ≥ 7.0)
  • 64GB RAM (Minimum)
  • 1TB NVMe SSD

Software Dependencies

  • Rust 1.71+ (with Solana Tool Suite)
  • Python 3.10+ (CUDA 12.1 Toolkit)
  • Node.js 20.0+ (PNPM 8.15+)
  • PostgreSQL 15+ with TimescaleDB
  • IPFS Kubo 0.22.0+

Installation

1. Clone Repository

git clone --recurse-submodules https://github.com/umazen/umazen.git
cd umazen

2. Install Core Dependencies

# Install Solana Toolchain
./scripts/install_solana.sh

# Setup Python Environment
make venv && source .venv/bin/activate
pip install -r requirements.txt

# Install Node Modules
pnpm install

3. Initialize Infrastructure

# Start Local Validator
solana-test-validator --reset --quiet &

# Deploy Programs
anchor build && anchor deploy

# Start IPFS Cluster
ipfs init --profile=test
ipfs daemon --enable-gc --routing=dhtclient &

Configuration

Environment Variables

# .env.example
SOLANA_RPC_URL="https://api.mainnet-beta.solana.com"
MODEL_REGISTRY_PROGRAM_ID="Umaz...1111"
ZK_PROVER_KEY_PATH="./keys/prover.key"
INFERENCE_NODE_GPU=0,1  # Comma-separated GPU indices

Development Workflow

Local Development

# Start Development Servers
make dev

# Program Hot-Reloading
anchor watch

Testing

# Run All Test Suites
make test

# Specific Test Targets
cargo test -p umazen_program --test federated_learning
pnpm test:e2e -- --network localnet

Production Deployment

Kubernetes Setup

# Apply Cluster Configuration
kubectl apply -f deploy/k8s/production

# Monitor Deployment
kubectl get pods -n umazen -w

Mainnet Deployment Checklist

  • Verify Program IDs in Anchor.toml
  • Generate Final Keys: make generate-keys
  • Deploy Programs: anchor deploy --provider.cluster mainnet
  • Initialize Market: pnpm cli market:init

Security

Audit Process

  • Critical Fixes Response Time: <4 hours
  • Quarterly Third-Party Audits

Key Management

  • Hardware Security Module (HSM) Integration
  • Threshold Signatures for Multi-Sig Wallets
  • Ephemeral Proving Keys for ZK Operations

Performance Optimization

Benchmark Targets

Operation Target Latency Throughput
Training Round 2.5s 150 models/min
Inference 85ms 10k req/s
Proof Generation 1.2s 45 proofs/min

Optimization Techniques

  • Batch Proof Aggregation
  • CUDA-Accelerated Linear Algebra
  • Memory-Mapped Model Weights
  • Async Runtime for Concurrent Verifications