Production-Grade Framework for On-Chain AI Model Training & Inference Markets
Build a decentralized AI infrastructure on Solana, enabling secure on-chain model training and creating a global marketplace for AI inference services
🐦 Follow us on Twitter
- Architecture Overview
- Key Features
- Getting Started
- Development Workflow
- Security
- Performance Optimization
- Contributing
- License
%% Architecture Diagram for Umazen
graph TD
subgraph Blockchain Layer
SP[Solana Programs] -->|Program Instructions| MR(Model Registry)
SP -->|State Management| VM[Verification Market]
SP -->|Settlement| PM[Payment Module]
MR -->|Hash Storage| IPFS[(IPFS Cluster)]
VM -->|Proof Verification| ZK[ZK Proof Verifier]
end
subgraph AI Infrastructure Layer
FL[Federated Learning Engine] -->|Aggregated Updates| MR
FL -->|Differential Privacy| DP[Privacy Engine]
ZK[ZK Provers] -->|Proof Generation| VM
IM[Inference Market] -->|Resource Allocation| KC[Kubernetes Cluster]
KC -->|GPU Orchestration| GPU([NVIDIA GPUs])
DP -->|Secure Aggregation| SA[Secure Aggregator]
end
subgraph Client Layer
UI[Web Interface] -->|User Operations| SP
UI -->|Model Visualization| TS[TypeScript SDK]
TS -->|API Calls| BE[Backend Services]
BE -->|Training Jobs| FL
BE -->|Inference Requests| IM
PY[Python SDK] -->|Local Training| FL
PY -->|Model Submission| MR
end
classDef solana fill:#14f195,color:#000;
classDef ai fill:#7e57c2,color:#fff;
classDef client fill:#2196f3,color:#fff;
class SP,MR,VM,PM solana;
class FL,ZK,IM,DP,SA,KC ai;
class UI,TS,PY,BE client;
The system comprises three core layers:
-
Blockchain Layer
- Solana Program Modules
- On-Chain Model Registry
- Proof Verification System
-
AI Infrastructure Layer
- Federated Learning Engine
- ZKML Proof Generation
- Distributed Inference Nodes
-
Client Layer
- TypeScript SDK
- Python Training Toolkit
- React Web Interface
-
🧠 On-Chain Model Training
- Federated Learning with Cryptographically Verified Updates
- Privacy-Preserving Training via Secure Aggregation
- Model Version Control with Merkleized Snapshots
-
⚡ Inference Marketplace
- Real-Time Bidding System for Compute Resources
- ZK-Proof Verified Inference Results
- Multi-Currency Payment Support
-
🔒 Security Framework
- Role-Based Access Control (RBAC)
- Model Integrity Proofs using Poseidon Hashes
- Encrypted Model Weights Storage
- Parallelized Proof Generation using CUDA
- Automated Model Quantization (FP32 → INT8)
- Cross-Chain Verification Bridges
- Dynamic Pricing Oracle for Compute Resources
- GPU-Optimized Training Pipelines
System Requirements
- x86_64 Architecture (AVX2 Support Required)
- NVIDIA GPU (Compute Capability ≥ 7.0)
- 64GB RAM (Minimum)
- 1TB NVMe SSD
Software Dependencies
- Rust 1.71+ (with Solana Tool Suite)
- Python 3.10+ (CUDA 12.1 Toolkit)
- Node.js 20.0+ (PNPM 8.15+)
- PostgreSQL 15+ with TimescaleDB
- IPFS Kubo 0.22.0+
1. Clone Repository
git clone --recurse-submodules https://github.com/umazen/umazen.git
cd umazen
2. Install Core Dependencies
# Install Solana Toolchain
./scripts/install_solana.sh
# Setup Python Environment
make venv && source .venv/bin/activate
pip install -r requirements.txt
# Install Node Modules
pnpm install
3. Initialize Infrastructure
# Start Local Validator
solana-test-validator --reset --quiet &
# Deploy Programs
anchor build && anchor deploy
# Start IPFS Cluster
ipfs init --profile=test
ipfs daemon --enable-gc --routing=dhtclient &
# .env.example
SOLANA_RPC_URL="https://api.mainnet-beta.solana.com"
MODEL_REGISTRY_PROGRAM_ID="Umaz...1111"
ZK_PROVER_KEY_PATH="./keys/prover.key"
INFERENCE_NODE_GPU=0,1 # Comma-separated GPU indices
# Start Development Servers
make dev
# Program Hot-Reloading
anchor watch
# Run All Test Suites
make test
# Specific Test Targets
cargo test -p umazen_program --test federated_learning
pnpm test:e2e -- --network localnet
Kubernetes Setup
# Apply Cluster Configuration
kubectl apply -f deploy/k8s/production
# Monitor Deployment
kubectl get pods -n umazen -w
- Verify Program IDs in Anchor.toml
- Generate Final Keys: make generate-keys
- Deploy Programs: anchor deploy --provider.cluster mainnet
- Initialize Market: pnpm cli market:init
- Critical Fixes Response Time: <4 hours
- Quarterly Third-Party Audits
- Hardware Security Module (HSM) Integration
- Threshold Signatures for Multi-Sig Wallets
- Ephemeral Proving Keys for ZK Operations
Operation | Target Latency | Throughput |
---|---|---|
Training Round | 2.5s | 150 models/min |
Inference | 85ms | 10k req/s |
Proof Generation | 1.2s | 45 proofs/min |
- Batch Proof Aggregation
- CUDA-Accelerated Linear Algebra
- Memory-Mapped Model Weights
- Async Runtime for Concurrent Verifications