National Yang Ming Chiao Tung University Graduate Course, Artificial Intelligence.
國立陽明交通大學 2024 Fall Semester 人工智慧 楊元福教授
This repository contains three assignment folders:
- HW1
- HW2
- HW3
-
Clone this repository to your local machine:
git clone https://github.com/Vincent-Lien/NYCU_AI_2024.git cd NYCU_AI_2024
-
Install the required Python packages:
pip install -r requirement.txt
- This repository is based on Python 3.10.
HW1 is a Jupyter Notebook. Please open and run HW1_code.ipynb using Jupyter Notebook or Jupyter Lab.
HW2 is also a Jupyter Notebook. Please open and run HW2_code.ipynb using Jupyter Notebook or Jupyter Lab.
HW3 contains a Python script and some related data. Please follow these steps to run it:
-
Navigate to the HW3 folder:
cd HW3
-
Run the main.py script:
python main.py [--model {Net,CNN}] [--batch-size N] [--lr LR] [--epochs N]
Additional parameters:
--model
: Choose model architecture between Net or CNN (default: Net)--batch-size
: Set batch size for training (default: 64)--lr
: Set learning rate (default: 1.0)--epochs
: Set number of epochs to train (default: 14)
-
Or run all models using the provided shell script:
./run_all_models.sh
This script will execute all models sequentially and save the results.
Example configurations:
Models: Net, CNN Batch sizes: 16, 64, 256 Learning rates: 0.1, 0.01, 0.001 Epochs: 10, 100, 500
The script will evaluate model performance across these parameter combinations.
- For a comprehensive Python and NumPy tutorial, visit CS231n Python NumPy Tutorial