Skip to content
/ GCA Public

This repository is code for debiasing large chest X-ray datasets using StyleGAN3. We use code from HiddenInPlainSight repository to demonstrate our methods robustness agains adversarial attacks

Notifications You must be signed in to change notification settings

Wazhee/GCA

Repository files navigation

Generative Counterfactual Augmentation (GCA)

We explore how to construct unbiased Chest X-Ray datasets using StyleGAN!
Checkout our pytorch version [Code]

Chest X-Ray Interpolation using StyleGAN3
male2female m2f

Our method effectively mitigates the effects of adversarial label poisoning attacks.

Performance Evaluation - False Negative Rate (FNR)

fnr_baseline

Performance Evaluation - Area under the receiver operating characteristic curve (AUROC)

auroc_baseline

GCA Architecture

architecture_digram

Installation

git clone "https://github.com/Wazhee/Debiasing-Chest-X-Rays-with-StyleGAN.git"
cd Debiasing-Chest-X-Rays-with-StyleGAN

Simulating Adversarial Attacks

We used code from HiddenInPlainSight [Code][Paper] to simulate adversarial attacks. Specifically we demonstrate how our augmentation method improves the robustness of CXR classifiers against label poisoning attacks.

Link to the sample section: Link Text. All code for simulating adversarial label poisoning is found in HiddenIPS folder

cd HiddenIPS

To run original HiddenInPlainSight Code

python src/main.py -train

To simulate adversarial attacks on augmented dataset

python src/main.py -train -model densenet -augment True

To specify the attack rate

python src/main.py -train -model densenet -augment True -rate 0.05 -gpu 0

Testing HiddenIPS

python src/main.py -analyze -test_ds rsna
python src/main.py -analyze -test_ds rsna -augment True

Recreate Age Results

conda activate ada
cd Fall\ 2024/CXR\ Project/HiddenInPlainSight/
python src/main.py -train -model densenet -augment True -demo age -rate 0 -gpu 0

Recreate Random Results

conda activate ada
cd Fall\ 2024/CXR\ Project/HiddenInPlainSight/
python src/main.py -train_random -json 'src/random_F&0-20_0.15&0.73.json' -model densenet -gpu 0

Recreate w/ run.ai

cd jiezy/CXR/Debiasing-Chest-X-Rays-with-StyleGAN/HiddenIPS/src/
python main2.py -rate 0.05 -demo sex -gpu 0

Test CheXpert Dataset

conda activate ada
cd Fall\ 2024/CXR\ Project/HiddenInPlainSight/
python src/main.py -test -test_ds cxpt -model densenet -augment True -gpu 0

Cite this work

Kulkarni et al, Hidden in Plain Sight, MIDL 2024.

@article{kulkarni2024hidden,
  title={Hidden in Plain Sight: Undetectable Adversarial Bias Attacks on Vulnerable Patient Populations},
  author={Kulkarni, Pranav and Chan, Andrew and Navarathna, Nithya and Chan, Skylar and Yi, Paul H and Parekh, Vishwa S},
  journal={arXiv preprint arXiv:2402.05713},
  year={2024}
}

About

This repository is code for debiasing large chest X-ray datasets using StyleGAN3. We use code from HiddenInPlainSight repository to demonstrate our methods robustness agains adversarial attacks

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published