Keywords: epidemiology, compartmental model, state-space model, time-varying, regularization
git clone [email protected]:WenjieZ/2019-nCoV.git
cd 2019-nCoV
pip install .
- numpy
- scipy
- plotly (version 4)
from hsir.empirical import Region
city = Region(990, 10, 0, 0) # build a region with 990 susceptible, 10 infectious, 0 removed, 0 quarantined
from hsir.sir import SIR
dynamic = SIR(3, 1, 0.1) # SIR model (beta=0.3, gamma=0.1)
T = 100 # time horizon
epidemic = dynamic.estimate(city, T) # simulate the epidemic
from hsir.empirical import Sample
sample = Sample(epidemic, np.arange(T//10, T, T//10), 1000*np.ones(9), 10*np.ones(9), Poi, seed=0) # sample the epidemic
fig = SIR.plot(epidemic) # visualize the epidemic
sample.plot(fig) # visualize the sample
a = InferSIR() # infer an SIR model
a.fit(city, sample) # fit it with the initial condition and the sample
a.dynamic # the result is stored in the dynamic field
- SIR
- SIRQ
- SIRt
- SIRQt
- InferSIR
- InferSIRQ
- InferSIRt
- InferSIRQt
- Region
- Epidemic
- Sample
- Confirmed
- Resisted
@article{zheng2020total,
title={Total Variation Regularization for Compartmental Epidemic Models with Time-varying Dynamics},
author={Zheng, Wenjie},
journal={arXiv preprint arXiv:2004.00412},
year={2020}