This is the official implementation of MsIFT (Remote Sensing), a transformer-based image fusion method for classification and segmantation. For more details, please refer to:
MsIFT : Multi-source Image Fusion Transformer[Paper]
Xin Zhang , Hangzhi Jiang, Nuo Xu, Lei Ni, Chunlei Huo , Chunhong Pan
Our code is based on mmsegmentation and mmclassification.
For classification:
- Python 3.6+
- PyTorch 1.3+
- mmcv 1.1.4+
- torchvision
- timm
- mmcv-full==1.3.17
- mmcls==0.8.0
Clone the code
git clone [email protected]:XinZhangNLPR/MsIFT.git
Download the model weight used in the paper:
Accuracy | download | |
---|---|---|
MsIFT | 92.3 |
Put the model to classification/work_dirs/VAIS/
Accuracy | download | |
---|---|---|
MsIFT | 93.02 |
Put the model to classification/work_dirs/DFC2013/
Seg Method | mIoU | Accuarcy | download | |
---|---|---|---|---|
MsIFT | PSPNet | 67.51 | 70.49 | |
MsIFT | DANet | 67.94 | 70.82 |
Put the PSPNet model to segmentation/work_dir/PSPNet/
Put the DANet model to segmentation/work_dir/DANet/
1.Multi-GPUs Test
VAIS:
cd MsIFT/classification
./tools/dist_test.sh work_dirs/VAIS/SOTA_VAIS.py work_dirs/VAIS/VAIS.pth 8 --eval accuracy
DFC2013:
cd MsIFT/classification
./tools/dist_test.sh work_dirs/DFC2013/finetune_9285.py work_dirs/DFC2013/DFC2013.pth 8 --eval accuracy
SpaceNet6:
cd MsIFT/segmentation
./tools/dist_test.sh work_dir/PSPNet/pspnet_r50-d8.py work_dir/PSPNet/PSPNet.pth 8 --eval mIoU
2.Single-GPU Test
VAIS:
cd MsIFT/classification
python tools/test.py work_dirs/VAIS/SOTA_VAIS.py work_dirs/VAIS/VAIS.pth --eval accuracy
DFC2013:
cd MsIFT/classification
python tools/test.py work_dirs/DFC2013/finetune_9285.py work_dirs/DFC2013/DFC2013.pth 8 --eval accuracy
SpaceNet6:
cd MsIFT/segmentation
python tools/test.py work_dir/PSPNet/pspnet_r50-d8.py work_dir/PSPNet/PSPNet.pth 8 --eval mIoU
If you find our work relevant to your research, please cite:
@Article{rs14164062,
AUTHOR = {Zhang, Xin and Jiang, Hangzhi and Xu, Nuo and Ni, Lei and Huo, Chunlei and Pan, Chunhong},
TITLE = {MsIFT: Multi-Source Image Fusion Transformer},
JOURNAL = {Remote Sensing},
VOLUME = {14},
YEAR = {2022},
NUMBER = {16},
ARTICLE-NUMBER = {4062},
ISSN = {2072-4292},
DOI = {10.3390/rs14164062}
}