PyTorch implementation of "MLP-Mixer: An all-MLP Architecture for Vision"
Indicator | Value |
---|---|
Accuracy | 0.98330 |
Precision | 0.98321 |
Recall | 0.98307 |
F1-Score | 0.98311 |
Confusion Matrix
[[ 970 1 2 1 1 0 3 1 1 0]
[ 0 1125 3 4 0 1 0 1 1 0]
[ 0 0 1026 1 1 0 1 2 1 0]
[ 0 0 2 998 0 4 0 4 2 0]
[ 0 0 0 0 962 0 4 3 0 13]
[ 1 1 0 18 0 864 3 2 3 0]
[ 3 3 2 1 4 4 940 0 1 0]
[ 0 0 6 0 0 0 0 1021 1 0]
[ 6 1 3 2 2 3 1 3 950 3]
[ 1 3 0 3 4 5 0 13 2 978]]
Class-0 | Precision: 0.98879, Recall: 0.98980, F1-Score: 0.98929
Class-1 | Precision: 0.99206, Recall: 0.99119, F1-Score: 0.99163
Class-2 | Precision: 0.98276, Recall: 0.99419, F1-Score: 0.98844
Class-3 | Precision: 0.97082, Recall: 0.98812, F1-Score: 0.97939
Class-4 | Precision: 0.98768, Recall: 0.97963, F1-Score: 0.98364
Class-5 | Precision: 0.98070, Recall: 0.96861, F1-Score: 0.97462
Class-6 | Precision: 0.98739, Recall: 0.98121, F1-Score: 0.98429
Class-7 | Precision: 0.97238, Recall: 0.99319, F1-Score: 0.98268
Class-8 | Precision: 0.98753, Recall: 0.97536, F1-Score: 0.98140
Class-9 | Precision: 0.98390, Recall: 0.96928, F1-Score: 0.97654
Total | Accuracy: 0.98340, Precision: 0.98340, Recall: 0.98306, F1-Score: 0.98319
- PyTorch 1.11.0
[1] Tolstikhin, Ilya O., et al. "Mlp-mixer: An all-mlp architecture for vision." Advances in Neural Information Processing Systems 34 (2021).