The aim of this project is to provide various templates and examples for building a FastAPI WAS.
- Admin
- SQL DB
- Simple Dependency Injection
- FastAPI advanced practices
Let's learn essential stuffs for backend development.
- Caching on Redis with Postgres Async Repository
- Circuit Breaker
- Redis Failover
- Service Discovery with Zookeeper
- Movie API Server
- GeoIP Server
- Sentiment Analyzer
- Simple Web Scraping Server
- Simple pet care service (use scylladb as backend)
References: zhanymkanov/fastapi-best-practices
- FastAPI's sync operations runs in threadpool
- The size of the threadpool is 40, so if you exceed that number, sync operations might be blocked
- If you want to optimize CPU intensive tasks you should send them to workers in another process.
To learn more about best practices of authentication & permissions please refer here
Explicitly setting the indexes' namings according to your database's convention is preferable over sqlalchemy's.
from sqlalchemy import MetaData
POSTGRES_INDEXES_NAMING_CONVENTION = {
"ix": "%(column_0_label)s_idx",
"uq": "%(table_name)s_%(column_0_name)s_key",
"ck": "%(table_name)s_%(constraint_name)s_check",
"fk": "%(table_name)s_%(column_0_name)s_fkey",
"pk": "%(table_name)s_pkey",
}
metadata = MetaData(naming_convention=POSTGRES_INDEXES_NAMING_CONVENTION)
- Usually, database handles data processing much faster and cleaner than CPython will ever do.
- It's preferable to do all the complex joins and simple data manipulations with SQL.
- It's preferable to aggregate JSONs in DB for responses with nested objects.
# src.posts.service
from typing import Any
from pydantic import UUID4
from sqlalchemy import desc, func, select, text
from sqlalchemy.sql.functions import coalesce
from src.database import database, posts, profiles, post_review, products
async def get_posts(
creator_id: UUID4, *, limit: int = 10, offset: int = 0
) -> list[dict[str, Any]]:
select_query = (
select(
(
posts.c.id,
posts.c.slug,
posts.c.title,
func.json_build_object(
text("'id', profiles.id"),
text("'first_name', profiles.first_name"),
text("'last_name', profiles.last_name"),
text("'username', profiles.username"),
).label("creator"),
)
)
.select_from(posts.join(profiles, posts.c.owner_id == profiles.c.id))
.where(posts.c.owner_id == creator_id)
.limit(limit)
.offset(offset)
.group_by(
posts.c.id,
posts.c.type,
posts.c.slug,
posts.c.title,
profiles.c.id,
profiles.c.first_name,
profiles.c.last_name,
profiles.c.username,
profiles.c.avatar,
)
.order_by(
desc(coalesce(posts.c.updated_at, posts.c.published_at, posts.c.created_at))
)
)
return await database.fetch_all(select_query)
# src.posts.schemas
from typing import Any
from pydantic import BaseModel, UUID4
class Creator(BaseModel):
id: UUID4
first_name: str
last_name: str
username: str
class Post(BaseModel):
id: UUID4
slug: str
title: str
creator: Creator
# src.posts.router
from fastapi import APIRouter, Depends
router = APIRouter()
@router.get("/creators/{creator_id}/posts", response_model=list[Post])
async def get_creator_posts(creator: dict[str, Any] = Depends(valid_creator_id)):
posts = await service.get_posts(creator["id"])
return posts