Skip to content

ZeroNihl/SQHN

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

18 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Code used for the paper 'A Sparse Quantized Hopfield Network for Online-Continual Memory'.

Run with Python 3.7.6 and Pytorch 1.10.0.

All datasets besides the TinyImagenet dataset are downloaded automatically via Pytorch. To download TinyImagenet see https://github.com/tjmoon0104/pytorch-tiny-imagenet?tab=readme-ov-file

To reproduce data from a training run/experiment:

main.py --test argument

To reproduce plots for a training run/experiment:

main.py --plot argument

Here are the arguments for the various experiments used to reproduce tests and plots:

associative memory comparisons: assoc_comp

online-continual tests one hidden layer: OnCont-L1

online-continual tests three hidden layer: OnCont-L3

noisy encoding tests one hidden layer: nsEncode-L1

noisy encoding tests one hidden layer: nsEncode-L3

noisy encoding tests one hidden layer: recog

architecture comparisons: arch compare

For example, to reproduce the plots for the online-continual task with the one hidden layer models, run

main.py --test OnCont-L1

followed by

main.py --plot OnCont-L1

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%