forked from rtdip/core
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Browse files
Browse the repository at this point in the history
#106 Gaussian Smoothing
- Loading branch information
Showing
4 changed files
with
232 additions
and
0 deletions.
There are no files selected for viewing
1 change: 1 addition & 0 deletions
1
...-reference/pipelines/data_quality/data_manipulation/spark/gaussian_smoothing.md
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
::: src.sdk.python.rtdip_sdk.pipelines.data_quality.data_manipulation.spark.gaussian_smoothing |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
88 changes: 88 additions & 0 deletions
88
...sdk/python/rtdip_sdk/pipelines/data_quality/data_manipulation/spark/gaussian_smoothing.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,88 @@ | ||
import numpy as np | ||
from pyspark.sql.types import FloatType | ||
from scipy.ndimage import gaussian_filter1d | ||
from pyspark.sql import DataFrame as PySparkDataFrame, Window | ||
from pyspark.sql import functions as F | ||
|
||
from src.sdk.python.rtdip_sdk.pipelines._pipeline_utils.models import ( | ||
Libraries, | ||
SystemType, | ||
) | ||
from ..interfaces import DataManipulationBaseInterface | ||
|
||
|
||
class GaussianSmoothing(DataManipulationBaseInterface): | ||
def __init__( | ||
self, | ||
df: PySparkDataFrame, | ||
sigma: float, | ||
mode: str = "temporal", | ||
id_col: str = "id", | ||
timestamp_col: str = "timestamp", | ||
value_col: str = "value", | ||
) -> None: | ||
if not isinstance(df, PySparkDataFrame): | ||
raise TypeError("df must be a PySpark DataFrame") | ||
if not isinstance(sigma, (int, float)) or sigma <= 0: | ||
raise ValueError("sigma must be a positive number") | ||
if mode not in ["temporal", "spatial"]: | ||
raise ValueError("mode must be either 'temporal' or 'spatial'") | ||
|
||
if id_col not in df.columns: | ||
raise ValueError(f"Column {id_col} not found in DataFrame") | ||
if timestamp_col not in df.columns: | ||
raise ValueError(f"Column {timestamp_col} not found in DataFrame") | ||
if value_col not in df.columns: | ||
raise ValueError(f"Column {value_col} not found in DataFrame") | ||
|
||
self.df = df | ||
self.sigma = sigma | ||
self.mode = mode | ||
self.id_col = id_col | ||
self.timestamp_col = timestamp_col | ||
self.value_col = value_col | ||
|
||
@staticmethod | ||
def system_type(): | ||
return SystemType.PYSPARK | ||
|
||
@staticmethod | ||
def libraries(): | ||
libraries = Libraries() | ||
return libraries | ||
|
||
@staticmethod | ||
def settings() -> dict: | ||
return {} | ||
|
||
@staticmethod | ||
def create_gaussian_smoother(sigma_value): | ||
def apply_gaussian(values): | ||
if not values: | ||
return None | ||
values_array = np.array([float(v) for v in values]) | ||
smoothed = gaussian_filter1d(values_array, sigma=sigma_value) | ||
return float(smoothed[-1]) | ||
|
||
return apply_gaussian | ||
|
||
def filter(self) -> PySparkDataFrame: | ||
|
||
smooth_udf = F.udf(self.create_gaussian_smoother(self.sigma), FloatType()) | ||
|
||
if self.mode == "temporal": | ||
window = ( | ||
Window.partitionBy(self.id_col) | ||
.orderBy(self.timestamp_col) | ||
.rangeBetween(Window.unboundedPreceding, Window.unboundedFollowing) | ||
) | ||
else: # spatial mode | ||
window = ( | ||
Window.partitionBy(self.timestamp_col) | ||
.orderBy(self.id_col) | ||
.rangeBetween(Window.unboundedPreceding, Window.unboundedFollowing) | ||
) | ||
|
||
collect_list_expr = F.collect_list(F.col(self.value_col)).over(window) | ||
|
||
return self.df.withColumn(self.value_col, smooth_udf(collect_list_expr)) |
142 changes: 142 additions & 0 deletions
142
...ython/rtdip_sdk/pipelines/data_quality/data_manipulation/spark/test_gaussian_smoothing.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,142 @@ | ||
# Copyright 2025 RTDIP | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
import os | ||
import pytest | ||
from pyspark.sql import SparkSession | ||
|
||
from src.sdk.python.rtdip_sdk.pipelines.data_quality.data_manipulation.spark.gaussian_smoothing import ( | ||
GaussianSmoothing, | ||
) | ||
|
||
|
||
@pytest.fixture(scope="session") | ||
def spark_session(): | ||
spark = ( | ||
SparkSession.builder.master("local[2]") | ||
.appName("GaussianSmoothingTest") | ||
.getOrCreate() | ||
) | ||
yield spark | ||
spark.stop() | ||
|
||
|
||
def test_gaussian_smoothing_temporal(spark_session: SparkSession): | ||
df = spark_session.createDataFrame( | ||
[ | ||
("A2PS64V0J.:ZUX09R", "2024-01-02 03:49:45.000", "Good", "0.129999995"), | ||
("A2PS64V0J.:ZUX09R", "2024-01-02 07:53:11.000", "Good", "0.119999997"), | ||
("A2PS64V0J.:ZUX09R", "2024-01-02 11:56:42.000", "Good", "0.129999995"), | ||
("A2PS64V0J.:ZUX09R", "2024-01-02 16:00:12.000", "Good", "0.150000006"), | ||
("A2PS64V0J.:ZUX09R", "2024-01-02 20:03:46.000", "Good", "0.340000004"), | ||
], | ||
["TagName", "EventTime", "Status", "Value"], | ||
) | ||
|
||
smoother = GaussianSmoothing( | ||
df=df, | ||
sigma=2.0, | ||
id_col="TagName", | ||
mode="temporal", | ||
timestamp_col="EventTime", | ||
value_col="Value", | ||
) | ||
result_df = smoother.filter() | ||
|
||
original_values = df.select("Value").collect() | ||
smoothed_values = result_df.select("Value").collect() | ||
|
||
assert ( | ||
original_values != smoothed_values | ||
), "Values should be smoothed and not identical" | ||
|
||
assert result_df.count() == df.count(), "Result should have same number of rows" | ||
|
||
|
||
def test_gaussian_smoothing_spatial(spark_session: SparkSession): | ||
df = spark_session.createDataFrame( | ||
[ | ||
("A2PS64V0J.:ZUX09R", "2024-01-02 03:49:45.000", "Good", "0.129999995"), | ||
("A2PS64V0J.:ZUX09R", "2024-01-02 07:53:11.000", "Good", "0.119999997"), | ||
("A2PS64V0J.:ZUX09R", "2024-01-02 11:56:42.000", "Good", "0.129999995"), | ||
("A2PS64V0J.:ZUX09R", "2024-01-02 16:00:12.000", "Good", "0.150000006"), | ||
("A2PS64V0J.:ZUX09R", "2024-01-02 20:03:46.000", "Good", "0.340000004"), | ||
], | ||
["TagName", "EventTime", "Status", "Value"], | ||
) | ||
|
||
# Apply smoothing | ||
smoother = GaussianSmoothing( | ||
df=df, | ||
sigma=3.0, | ||
id_col="TagName", | ||
mode="spatial", | ||
timestamp_col="EventTime", | ||
value_col="Value", | ||
) | ||
result_df = smoother.filter() | ||
|
||
original_values = df.select("Value").collect() | ||
smoothed_values = result_df.select("Value").collect() | ||
|
||
assert ( | ||
original_values != smoothed_values | ||
), "Values should be smoothed and not identical" | ||
assert result_df.count() == df.count(), "Result should have same number of rows" | ||
|
||
|
||
def test_interval_detection_large_data_set(spark_session: SparkSession): | ||
# Should not timeout | ||
base_path = os.path.dirname(__file__) | ||
file_path = os.path.join(base_path, "../../test_data.csv") | ||
|
||
df = spark_session.read.option("header", "true").csv(file_path) | ||
|
||
smoother = GaussianSmoothing( | ||
df=df, | ||
sigma=1, | ||
id_col="TagName", | ||
mode="temporal", | ||
timestamp_col="EventTime", | ||
value_col="Value", | ||
) | ||
|
||
actual_df = smoother.filter() | ||
assert ( | ||
actual_df.count() == df.count() | ||
), "Output should have same number of rows as input" | ||
|
||
|
||
def test_gaussian_smoothing_invalid_mode(spark_session: SparkSession): | ||
# Create test data | ||
df = spark_session.createDataFrame( | ||
[ | ||
("A2PS64V0J.:ZUX09R", "2024-01-02 03:49:45.000", "Good", "0.129999995"), | ||
("A2PS64V0J.:ZUX09R", "2024-01-02 07:53:11.000", "Good", "0.119999997"), | ||
("A2PS64V0J.:ZUX09R", "2024-01-02 11:56:42.000", "Good", "0.129999995"), | ||
("A2PS64V0J.:ZUX09R", "2024-01-02 16:00:12.000", "Good", "0.150000006"), | ||
("A2PS64V0J.:ZUX09R", "2024-01-02 20:03:46.000", "Good", "0.340000004"), | ||
], | ||
["TagName", "EventTime", "Status", "Value"], | ||
) | ||
|
||
# Attempt to initialize with an invalid mode | ||
with pytest.raises(ValueError, match="mode must be either 'temporal' or 'spatial'"): | ||
GaussianSmoothing( | ||
df=df, | ||
sigma=2.0, | ||
id_col="TagName", | ||
mode="invalid_mode", # Invalid mode | ||
timestamp_col="EventTime", | ||
value_col="Value", | ||
) |