Skip to content
This repository was archived by the owner on Jan 28, 2025. It is now read-only.

Commit

Permalink
reformat for clean code
Browse files Browse the repository at this point in the history
  • Loading branch information
MBPro14 committed Jan 5, 2024
1 parent c118a5b commit 2a58fa8
Show file tree
Hide file tree
Showing 7 changed files with 1,289 additions and 915 deletions.
95 changes: 69 additions & 26 deletions audio.py
Original file line number Diff line number Diff line change
@@ -1,71 +1,85 @@
import librosa
import librosa.filters
import numpy as np

# import tensorflow as tf
from scipy import signal
from scipy.io import wavfile
from hparams import hparams as hp


def load_wav(path, sr):
return librosa.core.load(path, sr=sr)[0]


def save_wav(wav, path, sr):
wav *= 32767 / max(0.01, np.max(np.abs(wav)))
#proposed by @dsmiller
# proposed by @dsmiller
wavfile.write(path, sr, wav.astype(np.int16))


def save_wavenet_wav(wav, path, sr):
librosa.output.write_wav(path, wav, sr=sr)


def preemphasis(wav, k, preemphasize=True):
if preemphasize:
return signal.lfilter([1, -k], [1], wav)
return wav


def inv_preemphasis(wav, k, inv_preemphasize=True):
if inv_preemphasize:
return signal.lfilter([1], [1, -k], wav)
return wav


def get_hop_size():
hop_size = hp.hop_size
if hop_size is None:
assert hp.frame_shift_ms is not None
hop_size = int(hp.frame_shift_ms / 1000 * hp.sample_rate)
return hop_size


def linearspectrogram(wav):
D = _stft(preemphasis(wav, hp.preemphasis, hp.preemphasize))
S = _amp_to_db(np.abs(D)) - hp.ref_level_db

if hp.signal_normalization:
return _normalize(S)
return S


def melspectrogram(wav):
D = _stft(preemphasis(wav, hp.preemphasis, hp.preemphasize))
S = _amp_to_db(_linear_to_mel(np.abs(D))) - hp.ref_level_db

if hp.signal_normalization:
return _normalize(S)
return S


def _lws_processor():
import lws

return lws.lws(hp.n_fft, get_hop_size(), fftsize=hp.win_size, mode="speech")


def _stft(y):
if hp.use_lws:
return _lws_processor(hp).stft(y).T
else:
return librosa.stft(y=y, n_fft=hp.n_fft, hop_length=get_hop_size(), win_length=hp.win_size)
return librosa.stft(
y=y, n_fft=hp.n_fft, hop_length=get_hop_size(), win_length=hp.win_size
)


##########################################################
#Those are only correct when using lws!!! (This was messing with Wavenet quality for a long time!)
# Those are only correct when using lws!!! (This was messing with Wavenet quality for a long time!)
def num_frames(length, fsize, fshift):
"""Compute number of time frames of spectrogram
"""
pad = (fsize - fshift)
"""Compute number of time frames of spectrogram"""
pad = fsize - fshift
if length % fshift == 0:
M = (length + pad * 2 - fsize) // fshift + 1
else:
Expand All @@ -74,63 +88,92 @@ def num_frames(length, fsize, fshift):


def pad_lr(x, fsize, fshift):
"""Compute left and right padding
"""
"""Compute left and right padding"""
M = num_frames(len(x), fsize, fshift)
pad = (fsize - fshift)
pad = fsize - fshift
T = len(x) + 2 * pad
r = (M - 1) * fshift + fsize - T
return pad, pad + r


##########################################################
#Librosa correct padding
# Librosa correct padding
def librosa_pad_lr(x, fsize, fshift):
return 0, (x.shape[0] // fshift + 1) * fshift - x.shape[0]


# Conversions
_mel_basis = None


def _linear_to_mel(spectogram):
global _mel_basis
if _mel_basis is None:
_mel_basis = _build_mel_basis()
return np.dot(_mel_basis, spectogram)


def _build_mel_basis():
assert hp.fmax <= hp.sample_rate // 2
return librosa.filters.mel(sr=hp.sample_rate, n_fft= hp.n_fft, n_mels=hp.num_mels,
fmin=hp.fmin, fmax=hp.fmax)
return librosa.filters.mel(
sr=hp.sample_rate,
n_fft=hp.n_fft,
n_mels=hp.num_mels,
fmin=hp.fmin,
fmax=hp.fmax,
)


def _amp_to_db(x):
min_level = np.exp(hp.min_level_db / 20 * np.log(10))
return 20 * np.log10(np.maximum(min_level, x))


def _db_to_amp(x):
return np.power(10.0, (x) * 0.05)


def _normalize(S):
if hp.allow_clipping_in_normalization:
if hp.symmetric_mels:
return np.clip((2 * hp.max_abs_value) * ((S - hp.min_level_db) / (-hp.min_level_db)) - hp.max_abs_value,
-hp.max_abs_value, hp.max_abs_value)
return np.clip(
(2 * hp.max_abs_value) * ((S - hp.min_level_db) / (-hp.min_level_db))
- hp.max_abs_value,
-hp.max_abs_value,
hp.max_abs_value,
)
else:
return np.clip(hp.max_abs_value * ((S - hp.min_level_db) / (-hp.min_level_db)), 0, hp.max_abs_value)

return np.clip(
hp.max_abs_value * ((S - hp.min_level_db) / (-hp.min_level_db)),
0,
hp.max_abs_value,
)

assert S.max() <= 0 and S.min() - hp.min_level_db >= 0
if hp.symmetric_mels:
return (2 * hp.max_abs_value) * ((S - hp.min_level_db) / (-hp.min_level_db)) - hp.max_abs_value
return (2 * hp.max_abs_value) * (
(S - hp.min_level_db) / (-hp.min_level_db)
) - hp.max_abs_value
else:
return hp.max_abs_value * ((S - hp.min_level_db) / (-hp.min_level_db))


def _denormalize(D):
if hp.allow_clipping_in_normalization:
if hp.symmetric_mels:
return (((np.clip(D, -hp.max_abs_value,
hp.max_abs_value) + hp.max_abs_value) * -hp.min_level_db / (2 * hp.max_abs_value))
+ hp.min_level_db)
return (
(np.clip(D, -hp.max_abs_value, hp.max_abs_value) + hp.max_abs_value)
* -hp.min_level_db
/ (2 * hp.max_abs_value)
) + hp.min_level_db
else:
return ((np.clip(D, 0, hp.max_abs_value) * -hp.min_level_db / hp.max_abs_value) + hp.min_level_db)

return (
np.clip(D, 0, hp.max_abs_value) * -hp.min_level_db / hp.max_abs_value
) + hp.min_level_db

if hp.symmetric_mels:
return (((D + hp.max_abs_value) * -hp.min_level_db / (2 * hp.max_abs_value)) + hp.min_level_db)
return (
(D + hp.max_abs_value) * -hp.min_level_db / (2 * hp.max_abs_value)
) + hp.min_level_db
else:
return ((D * -hp.min_level_db / hp.max_abs_value) + hp.min_level_db)
return (D * -hp.min_level_db / hp.max_abs_value) + hp.min_level_db
Loading

0 comments on commit 2a58fa8

Please sign in to comment.