Skip to content

Commit e03e38d

Browse files
committed
feat: toctree entry and more content
1 parent 9f27581 commit e03e38d

File tree

2 files changed

+34
-4
lines changed

2 files changed

+34
-4
lines changed

doc/source/examples/extended_examples/index.rst

+1
Original file line numberDiff line numberDiff line change
@@ -41,4 +41,5 @@ with other programs, libraries, and features in development.
4141
executable/executable.rst
4242
gui/executable.rst
4343
hpc/hpc_ml_ga.rst
44+
sfem/stochastic_fem.rst
4445

doc/source/examples/extended_examples/sfem/stochastic_fem.rst

+33-4
Original file line numberDiff line numberDiff line change
@@ -114,10 +114,39 @@ involving stochastic processes will be mathematically and computationally intrac
114114
approximating them with a series of a finite number of random variables. A series expansion method which will
115115
be used in this example is explained next.
116116

117-
The Karhunen-Loève (K-L) series expansion
118-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
117+
The Karhunen-Loève (K-L) series expansion for a Gaussian process
118+
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
119+
More generally, the K-L expansion of any process is based on a spectral decomposition of its covariance function. Analytical
120+
solutions are possible in a few cases, and such is the case of Gaussian process.
121+
122+
119123
For a zero-mean stationary gaussian process, :math:`X(t)`, with covariance function
120-
:math:`C_X(t_i,t_j)=\sigma_X^2e^{-\frac{\lvert t_i-t_j \rvert}{b}}` defined on a domain :math:`\mathbb{D}=[-a,a]`,
124+
:math:`C_X(t_i,t_j)=\sigma_X^2e^{-\frac{\lvert t_i-t_j \rvert}{b}}` defined on a symmetric domain :math:`\mathbb{D}=[-a,a]`,
121125
the K-L series expansion is given by:
122126

123-
.. math:: X(t) = \sum_{n=1}^\infty \sqrt{\lambda_{n,c}}\cdot\phi_{n,c}(t)\cdot\xi_{n,c} + \sum_{n=1}^\infty \sqrt{\lambda_{n,s}}\cdot\phi_{n,s}(t)\cdot\xi_{n,s},\quad t\in\mathbb{D}
127+
.. math:: X(t) = \sum_{n=1}^\infty \sqrt{\lambda_{c,n}}\cdot\varphi_{c,n}(t)\cdot\xi_{c,n} + \sum_{n=1}^\infty \sqrt{\lambda_{s,n}}\cdot\varphi_{s,n}(t)\cdot\xi_{s,n},\quad t\in\mathbb{D}
128+
129+
where,
130+
131+
.. math:: \lambda_{c,n} = \frac{2b}{1+\omega_{c,n}^2\cdot b^2},\quad \varphi_{c,n}(t) = k_{c,n}\cos(\omega_{c,n}\cdot t)
132+
.. math:: k_{c,n} = \frac{1}{\sqrt{a+\frac{\sin(2\omega_{c,n}\cdot a)}{2\omega_{c,n}}}}
133+
134+
:math:`\omega_{c,n}` is obtained as the solution of
135+
136+
.. math:: \frac{1}{b} - \omega_{c,n}\cdot\tan(\omega_{c,n}\cdot a) = 0 \quad \text{in the range} \quad \biggl[(n-1)\frac{\pi}{a}, (n-\frac{1}{2})\frac{\pi}{a}\biggr]
137+
138+
and,
139+
140+
.. math:: \lambda_{s,n} = \frac{2b}{1+\omega_{s,n}^2\cdot b^2},\quad \varphi_{s,n}(t) = k_{s,n}\sin(\omega_{s,n}\cdot t)
141+
.. math:: k_{s,n} = \frac{1}{\sqrt{a-\frac{\sin(2\omega_{s,n}\cdot a)}{2\omega_{s,n}}}}
142+
143+
:math:`\omega_{s,n}` is obtained as the solution of
144+
145+
.. math:: \frac{1}{b}\cdot\tan(\omega_{s,n}\cdot a) + \omega_{s,n} = 0 \quad \text{in the range} \quad \biggl[(n-\frac{1}{2})\frac{\pi}{a}, n\frac{\pi}{a}\biggr]
146+
147+
The K-L expansion of a gaussian process has the property that :math:`\xi_{c,n}` are independent standard normal variables. For practical
148+
implementation, the infinite series of the K-L expansion above is truncated after a finite number of terms, M, giving the approximation
149+
150+
.. math:: X(t) \approx \hat{X}(t) = \sum_{n=1}^M \sqrt{\lambda_{c,n}}\cdot\varphi_{c,n}(t)\cdot\xi_{c,n} + \sum_{n=1}^M \sqrt{\lambda_{s,n}}\cdot\varphi_{s,n}(t)\cdot\xi_{s,n},\quad t\in\mathbb{D}
151+
152+

0 commit comments

Comments
 (0)