@@ -114,10 +114,39 @@ involving stochastic processes will be mathematically and computationally intrac
114
114
approximating them with a series of a finite number of random variables. A series expansion method which will
115
115
be used in this example is explained next.
116
116
117
- The Karhunen-Loève (K-L) series expansion
118
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
117
+ The Karhunen-Loève (K-L) series expansion for a Gaussian process
118
+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
119
+ More generally, the K-L expansion of any process is based on a spectral decomposition of its covariance function. Analytical
120
+ solutions are possible in a few cases, and such is the case of Gaussian process.
121
+
122
+
119
123
For a zero-mean stationary gaussian process, :math: `X(t)`, with covariance function
120
- :math: `C_X(t_i,t_j)=\sigma _X^2 e^{-\frac {\lvert t_i-t_j \rvert }{b}}` defined on a domain :math: `\mathbb {D}=[-a,a]`,
124
+ :math: `C_X(t_i,t_j)=\sigma _X^2 e^{-\frac {\lvert t_i-t_j \rvert }{b}}` defined on a symmetric domain :math: `\mathbb {D}=[-a,a]`,
121
125
the K-L series expansion is given by:
122
126
123
- .. math :: X(t) = \sum_{n=1}^\infty \sqrt{\lambda_{n,c}}\cdot\phi_{n,c}(t)\cdot\xi_{n,c} + \sum_{n=1}^\infty \sqrt{\lambda_{n,s}}\cdot\phi_{n,s}(t)\cdot\xi_{n,s},\quad t\in\mathbb{D}
127
+ .. math :: X(t) = \sum_{n=1}^\infty \sqrt{\lambda_{c,n}}\cdot\varphi_{c,n}(t)\cdot\xi_{c,n} + \sum_{n=1}^\infty \sqrt{\lambda_{s,n}}\cdot\varphi_{s,n}(t)\cdot\xi_{s,n},\quad t\in\mathbb{D}
128
+
129
+ where,
130
+
131
+ .. math :: \lambda_{c,n} = \frac{2b}{1+\omega_{c,n}^2\cdot b^2},\quad \varphi_{c,n}(t) = k_{c,n}\cos(\omega_{c,n}\cdot t)
132
+ .. math :: k_{c,n} = \frac{1}{\sqrt{a+\frac{\sin(2\omega_{c,n}\cdot a)}{2\omega_{c,n}}}}
133
+
134
+ :math: `\omega _{c,n}` is obtained as the solution of
135
+
136
+ .. math :: \frac{1}{b} - \omega_{c,n}\cdot\tan(\omega_{c,n}\cdot a) = 0 \quad \text{in the range} \quad \biggl[(n-1)\frac{\pi}{a}, (n-\frac{1}{2})\frac{\pi}{a}\biggr]
137
+
138
+ and,
139
+
140
+ .. math :: \lambda_{s,n} = \frac{2b}{1+\omega_{s,n}^2\cdot b^2},\quad \varphi_{s,n}(t) = k_{s,n}\sin(\omega_{s,n}\cdot t)
141
+ .. math :: k_{s,n} = \frac{1}{\sqrt{a-\frac{\sin(2\omega_{s,n}\cdot a)}{2\omega_{s,n}}}}
142
+
143
+ :math: `\omega _{s,n}` is obtained as the solution of
144
+
145
+ .. math :: \frac{1}{b}\cdot\tan(\omega_{s,n}\cdot a) + \omega_{s,n} = 0 \quad \text{in the range} \quad \biggl[(n-\frac{1}{2})\frac{\pi}{a}, n\frac{\pi}{a}\biggr]
146
+
147
+ The K-L expansion of a gaussian process has the property that :math: `\xi _{c,n}` are independent standard normal variables. For practical
148
+ implementation, the infinite series of the K-L expansion above is truncated after a finite number of terms, M, giving the approximation
149
+
150
+ .. math :: X(t) \approx \hat{X}(t) = \sum_{n=1}^M \sqrt{\lambda_{c,n}}\cdot\varphi_{c,n}(t)\cdot\xi_{c,n} + \sum_{n=1}^M \sqrt{\lambda_{s,n}}\cdot\varphi_{s,n}(t)\cdot\xi_{s,n},\quad t\in\mathbb{D}
151
+
152
+
0 commit comments