Skip to content

Forecast time series and stock prices with SCINet

Notifications You must be signed in to change notification settings

applebug007/SCINet

 
 

Repository files navigation

SCINet: Sample Convolution and Interaction Networks Implementation (Work in Progress)

This is an implementation of SCINet using tensorflow and a work in progress. I want to explore the possibility of using SCINet to predict cryptocurrency prices and how they compare to traditional approaches such as an ARIMA.

SCINet is a novel architecture for time series forecasting proposed in this paper. See original paper for link to datasets.

Notes

  • See applications.testing.sinewave.py for usage examples
  • Obtained similar results on the ETD dataset (ETDataset-main/ETT-small/ETTh1.csv) used in the orignal paper but only with a batch size of 16 instead of 4. The cause of the discrepancy is unclear - pending investigation.
  • Scored poorly on crypto data (mse ~= 1.5, ase ~= 0.8 when data is relative difference). Learning curve suggests model is underfitting, which is expected as the data contains only a few basic features and has undergone minimal feature engineering. No hyperparamters tuning either. The score should serve as a baseline for future improvements.

About

Forecast time series and stock prices with SCINet

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 64.9%
  • Jupyter Notebook 35.1%