-
Notifications
You must be signed in to change notification settings - Fork 114
/
Copy pathvisualizer.py
334 lines (289 loc) · 14.4 KB
/
visualizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
import click
import os
import multiprocessing
import numpy as np
import imgui
import dnnlib
from gui_utils import imgui_window
from gui_utils import imgui_utils
from gui_utils import gl_utils
from gui_utils import text_utils
from viz import renderer
from viz import pickle_widget
from viz import latent_widget
from viz import stylemix_widget
from viz import trunc_noise_widget
from viz import performance_widget
from viz import capture_widget
from viz import layer_widget
from viz import equivariance_widget
#----------------------------------------------------------------------------
class Visualizer(imgui_window.ImguiWindow):
def __init__(self, capture_dir=None):
super().__init__(title='GAN Visualizer', window_width=3840, window_height=2160)
# Internals.
self._last_error_print = None
self._async_renderer = AsyncRenderer()
self._defer_rendering = 0
self._tex_img = None
self._tex_obj = None
# Widget interface.
self.args = dnnlib.EasyDict()
self.result = dnnlib.EasyDict()
self.pane_w = 0
self.label_w = 0
self.button_w = 0
# Widgets.
self.pickle_widget = pickle_widget.PickleWidget(self)
self.latent_widget = latent_widget.LatentWidget(self)
self.stylemix_widget = stylemix_widget.StyleMixingWidget(self)
self.trunc_noise_widget = trunc_noise_widget.TruncationNoiseWidget(self)
self.perf_widget = performance_widget.PerformanceWidget(self)
self.capture_widget = capture_widget.CaptureWidget(self)
self.layer_widget = layer_widget.LayerWidget(self)
self.eq_widget = equivariance_widget.EquivarianceWidget(self)
if capture_dir is not None:
self.capture_widget.path = capture_dir
# Initialize window.
self.set_position(0, 0)
self._adjust_font_size()
self.skip_frame() # Layout may change after first frame.
def close(self):
super().close()
if self._async_renderer is not None:
self._async_renderer.close()
self._async_renderer = None
def add_recent_pickle(self, pkl, ignore_errors=False):
self.pickle_widget.add_recent(pkl, ignore_errors=ignore_errors)
def load_pickle(self, pkl, ignore_errors=False):
self.pickle_widget.load(pkl, ignore_errors=ignore_errors)
def print_error(self, error):
error = str(error)
if error != self._last_error_print:
print('\n' + error + '\n')
self._last_error_print = error
def defer_rendering(self, num_frames=1):
self._defer_rendering = max(self._defer_rendering, num_frames)
def clear_result(self):
self._async_renderer.clear_result()
def set_async(self, is_async):
if is_async != self._async_renderer.is_async:
self._async_renderer.set_async(is_async)
self.clear_result()
if 'image' in self.result:
self.result.message = 'Switching rendering process...'
self.defer_rendering()
def _adjust_font_size(self):
old = self.font_size
self.set_font_size(min(self.content_width / 120, self.content_height / 60))
if self.font_size != old:
self.skip_frame() # Layout changed.
def draw_frame(self):
self.begin_frame()
self.args = dnnlib.EasyDict()
self.pane_w = self.font_size * 45
self.button_w = self.font_size * 5
self.label_w = round(self.font_size * 4.5)
# Detect mouse dragging in the result area.
dragging, dx, dy = imgui_utils.drag_hidden_window('##result_area', x=self.pane_w, y=0, width=self.content_width-self.pane_w, height=self.content_height)
if dragging:
self.latent_widget.drag(dx, dy)
# Begin control pane.
imgui.set_next_window_position(0, 0)
imgui.set_next_window_size(self.pane_w, self.content_height)
imgui.begin('##control_pane', closable=False, flags=(imgui.WINDOW_NO_TITLE_BAR | imgui.WINDOW_NO_RESIZE | imgui.WINDOW_NO_MOVE))
# Widgets.
expanded, _visible = imgui_utils.collapsing_header('Network & latent', default=True)
self.pickle_widget(expanded)
self.latent_widget(expanded)
self.stylemix_widget(expanded)
self.trunc_noise_widget(expanded)
expanded, _visible = imgui_utils.collapsing_header('Performance & capture', default=True)
self.perf_widget(expanded)
self.capture_widget(expanded)
expanded, _visible = imgui_utils.collapsing_header('Layers & channels', default=True)
self.layer_widget(expanded)
with imgui_utils.grayed_out(not self.result.get('has_input_transform', False)):
expanded, _visible = imgui_utils.collapsing_header('Equivariance', default=True)
self.eq_widget(expanded)
# Render.
if self.is_skipping_frames():
pass
elif self._defer_rendering > 0:
self._defer_rendering -= 1
elif self.args.pkl is not None:
self._async_renderer.set_args(**self.args)
result = self._async_renderer.get_result()
if result is not None:
self.result = result
# Display.
max_w = self.content_width - self.pane_w
max_h = self.content_height
pos = np.array([self.pane_w + max_w / 2, max_h / 2])
if 'image' in self.result:
if self._tex_img is not self.result.image:
self._tex_img = self.result.image
if self._tex_obj is None or not self._tex_obj.is_compatible(image=self._tex_img):
self._tex_obj = gl_utils.Texture(image=self._tex_img, bilinear=False, mipmap=False)
else:
self._tex_obj.update(self._tex_img)
zoom = min(max_w / self._tex_obj.width, max_h / self._tex_obj.height)
zoom = np.floor(zoom) if zoom >= 1 else zoom
self._tex_obj.draw(pos=pos, zoom=zoom, align=0.5, rint=True)
if 'error' in self.result:
self.print_error(self.result.error)
if 'message' not in self.result:
self.result.message = str(self.result.error)
if 'message' in self.result:
tex = text_utils.get_texture(self.result.message, size=self.font_size, max_width=max_w, max_height=max_h, outline=2)
tex.draw(pos=pos, align=0.5, rint=True, color=1)
# End frame.
self._adjust_font_size()
imgui.end()
self.end_frame()
#----------------------------------------------------------------------------
class AsyncRenderer:
def __init__(self):
self._closed = False
self._is_async = False
self._cur_args = None
self._cur_result = None
self._cur_stamp = 0
self._renderer_obj = None
self._args_queue = None
self._result_queue = None
self._process = None
def close(self):
self._closed = True
self._renderer_obj = None
if self._process is not None:
self._process.terminate()
self._process = None
self._args_queue = None
self._result_queue = None
@property
def is_async(self):
return self._is_async
def set_async(self, is_async):
self._is_async = is_async
def set_args(self, **args):
assert not self._closed
if args != self._cur_args:
if self._is_async:
self._set_args_async(**args)
else:
self._set_args_sync(**args)
self._cur_args = args
def _set_args_async(self, **args):
if self._process is None:
self._args_queue = multiprocessing.Queue()
self._result_queue = multiprocessing.Queue()
try:
multiprocessing.set_start_method('spawn')
except RuntimeError:
pass
self._process = multiprocessing.Process(target=self._process_fn, args=(self._args_queue, self._result_queue), daemon=True)
self._process.start()
self._args_queue.put([args, self._cur_stamp])
def _set_args_sync(self, **args):
if self._renderer_obj is None:
self._renderer_obj = renderer.Renderer()
self._cur_result = self._renderer_obj.render(**args)
def get_result(self):
assert not self._closed
if self._result_queue is not None:
while self._result_queue.qsize() > 0:
result, stamp = self._result_queue.get()
if stamp == self._cur_stamp:
self._cur_result = result
return self._cur_result
def clear_result(self):
assert not self._closed
self._cur_args = None
self._cur_result = None
self._cur_stamp += 1
@staticmethod
def _process_fn(args_queue, result_queue):
renderer_obj = renderer.Renderer()
cur_args = None
cur_stamp = None
while True:
args, stamp = args_queue.get()
while args_queue.qsize() > 0:
args, stamp = args_queue.get()
if args != cur_args or stamp != cur_stamp:
result = renderer_obj.render(**args)
if 'error' in result:
result.error = renderer.CapturedException(result.error)
result_queue.put([result, stamp])
cur_args = args
cur_stamp = stamp
#----------------------------------------------------------------------------
@click.command()
@click.argument('pkls', metavar='PATH', nargs=-1)
@click.option('--capture-dir', help='Where to save screenshot captures', metavar='PATH', default=None)
@click.option('--browse-dir', help='Specify model path for the \'Browse...\' button', metavar='PATH')
def main(
pkls,
capture_dir,
browse_dir
):
"""Interactive model visualizer.
Optional PATH argument can be used specify which .pkl file to load.
"""
viz = Visualizer(capture_dir=capture_dir)
if browse_dir is not None:
viz.pickle_widget.search_dirs = [browse_dir]
# List pickles.
if len(pkls) > 0:
for pkl in pkls:
viz.add_recent_pickle(pkl)
viz.load_pickle(pkls[0])
else:
pretrained = [
'https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan3/versions/1/files/stylegan3-r-afhqv2-512x512.pkl',
'https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan3/versions/1/files/stylegan3-r-ffhq-1024x1024.pkl',
'https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan3/versions/1/files/stylegan3-r-ffhqu-1024x1024.pkl',
'https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan3/versions/1/files/stylegan3-r-ffhqu-256x256.pkl',
'https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan3/versions/1/files/stylegan3-r-metfaces-1024x1024.pkl',
'https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan3/versions/1/files/stylegan3-r-metfacesu-1024x1024.pkl',
'https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan3/versions/1/files/stylegan3-t-afhqv2-512x512.pkl',
'https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan3/versions/1/files/stylegan3-t-ffhq-1024x1024.pkl',
'https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan3/versions/1/files/stylegan3-t-ffhqu-1024x1024.pkl',
'https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan3/versions/1/files/stylegan3-t-ffhqu-256x256.pkl',
'https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan3/versions/1/files/stylegan3-t-metfaces-1024x1024.pkl',
'https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan3/versions/1/files/stylegan3-t-metfacesu-1024x1024.pkl',
'https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan2/versions/1/files/stylegan2-afhqcat-512x512.pkl',
'https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan2/versions/1/files/stylegan2-afhqdog-512x512.pkl',
'https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan2/versions/1/files/stylegan2-afhqv2-512x512.pkl',
'https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan2/versions/1/files/stylegan2-afhqwild-512x512.pkl',
'https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan2/versions/1/files/stylegan2-brecahad-512x512.pkl',
'https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan2/versions/1/files/stylegan2-celebahq-256x256.pkl',
'https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan2/versions/1/files/stylegan2-cifar10-32x32.pkl',
'https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan2/versions/1/files/stylegan2-ffhq-1024x1024.pkl',
'https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan2/versions/1/files/stylegan2-ffhq-256x256.pkl',
'https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan2/versions/1/files/stylegan2-ffhq-512x512.pkl',
'https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan2/versions/1/files/stylegan2-ffhqu-1024x1024.pkl',
'https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan2/versions/1/files/stylegan2-ffhqu-256x256.pkl',
'https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan2/versions/1/files/stylegan2-lsundog-256x256.pkl',
'https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan2/versions/1/files/stylegan2-metfaces-1024x1024.pkl',
'https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan2/versions/1/files/stylegan2-metfacesu-1024x1024.pkl'
]
# Populate recent pickles list with pretrained model URLs.
for url in pretrained:
viz.add_recent_pickle(url)
# Run.
while not viz.should_close():
viz.draw_frame()
viz.close()
#----------------------------------------------------------------------------
if __name__ == "__main__":
main()
#----------------------------------------------------------------------------