Skip to content

Commit

Permalink
adding time series files.
Browse files Browse the repository at this point in the history
  • Loading branch information
bk521234 committed Jul 3, 2019
1 parent e32d95d commit 3917be3
Show file tree
Hide file tree
Showing 5 changed files with 152 additions and 2 deletions.
5 changes: 3 additions & 2 deletions comparing_machine_learning_algorithms.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,8 @@
from sklearn.naive_bayes import GaussianNB
from sklearn.svm import SVC
# load dataset
url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv"
#url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv"
url = "pima-indians-diabetes-data.csv"
names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']
dataframe = pandas.read_csv(url, names=names)
array = dataframe.values
Expand Down Expand Up @@ -44,4 +45,4 @@
ax = fig.add_subplot(111)
plt.boxplot(results)
ax.set_xticklabels(names)
plt.show()
plt.show()
25 changes: 25 additions & 0 deletions nltk_practice.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,25 @@
from nltk import sent_tokenize
from nltk.tokenize import word_tokenize

text = "Success is not final. Failure is not fatal. It is the courage to continure that counts."

sent_tokens = sent_tokenize(text)

print(sent_tokens)

for sentence in sent_tokens:
print(sentence)

sent = "Let's see how the tokenizer split's this!"
word_tokens = word_tokenize(sent)
print(word_tokens)
from nltk.tokenize import TreebankWordTokenizer, WordPunctTokenizer, WhitespaceTokenizer
tree_tokenizer = TreebankWordTokenizer()
word_punct_tokenizer = WordPunctTokenizer()
white_space_tokenizer = WhitespaceTokenizer()
word_tokens = tree_tokenizer.tokenize(sent)
print(word_tokens)
word_tokens = word_punct_tokenizer.tokenize(sent)
print(word_tokens)
word_tokens = white_space_tokenizer.tokenize(sent)
print(word_tokens)
2 changes: 2 additions & 0 deletions replacement_list_comparer.py
Original file line number Diff line number Diff line change
Expand Up @@ -42,6 +42,8 @@ def compare(self):
if old_item in self.new_list:
# YoY match
print("FOUND EXACT MATCH: {}".format(old_item))
#translation[old_item] = old_item

continue
elif any(substring for substring in self.json_translation_dict_keys if substring in old_item ):
answer = self.search_for_common_replacements_match(old_item)
Expand Down
86 changes: 86 additions & 0 deletions stock_market_prediction_minute.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,86 @@
# https://medium.com/mlreview/a-simple-deep-learning-model-for-stock-price-prediction-using-tensorflow-30505541d877

import pandas as pd
import matplotlib.pyplot as plt

import tensorflow as tf

# import data
#
# data was already cleaned and prepared,
# meaning missing stock and index prices
# were LOCF'ed (last observation carried
# forward), so that the file did not
# contain any missing values
data = pd.read_csv('./sp500/data_stocks.csv')

# drop data variable
data = data.drop(['DATE'], 1)

# dimensions of dataset
n = data.shape[0]
p = data.shape[1]

plt.plot(data['SP500'])
plt.show()


# make data a numpy array
data = data.values



# training and test data
train_start = 0
train_end = int(np.floor(0.8*n))

test_start = train_end
test_end = n

data_train = data[np.arange(train_start, train_end), :]
data_test = data[np.arange(test_start, test_end), :]


# scale data
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
data_train = scaler.fit_transform(data_train)
data_test = scaler.transform(data_test)

# build X and Y
X_train = data_train[:, 1:]
Y_train = data_train[:, 0]
X_test = data_test[:, 1:]
Y_test = data_test[:, 0]


# placeholder
X = tf.placeholder(dtype=tf.float32, shape=[None, n_stocks])
Y = tf.placeholder(dtype=tf.float32, shape=[None])

# model architecture parameters
n_stocks = 500
n_neurons_1 = 1024
n_neurons_2 = 512
n_neurons_3 = 256
n_neurons_4 = 128
n_target = 1

# Layer 1: variables for hidden weights and biases
W_hidden_1 = tf.Variable(weight_initializer([n_stocks, n_neurons_1]))
bias_hidden_1 = tf.Variable(bias_initializer([n_neurons_1]))

# Layer 2: Variables for hidden weights and biases
W_hidden_2 = tf.Variable(weight_initializer([n_neurons_1, n_neurons_2]))
bias_hidden_2 = tf.Variable(bias_initializer([n_neurons_2]))
# Layer 3: Variables for hidden weights and biases
W_hidden_3 = tf.Variable(weight_initializer([n_neurons_2, n_neurons_3]))
bias_hidden_3 = tf.Variable(bias_initializer([n_neurons_3]))
# Layer 4: Variables for hidden weights and biases
W_hidden_4 = tf.Variable(weight_initializer([n_neurons_3, n_neurons_4]))
bias_hidden_4 = tf.Variable(bias_initializer([n_neurons_4]))
# Output layer: Variables for output weights and biases
W_out = tf.Variable(weight_initializer([n_neurons_4, n_target]))
bias_out = tf.Variable(bias_initializer([n_target]))


36 changes: 36 additions & 0 deletions time_series_stock_basic.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,36 @@
# https://www.analyticsvidhya.com/blog/2018/10/predicting-stock-price-machine-learningnd-deep-learning-techniques-python/

# import packages
import pandas as pd
import numpy as np

# to plot within notebook
import matplotlib.pyplot as plt

# setting figure size
from matplotlib.pylab import rcParams
rcParams['figure.figsize'] = 20,10

# for normalizing data
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler(feature_range=(0,1))

# read the file
df = pd.read_csv('NSE-TATAGLOBAL11.csv')

# print the head
print(df.head())


# setting index as date
df['Date'] = pd.to_datetime(df.Date, format='%Y-%m-%d')
df.index = df['Date']

# plot
plt.figure(figsize=(16,8))
plt.plot(df['Close'], label='Close Price History')
plt.show()




0 comments on commit 3917be3

Please sign in to comment.