Model training and evaluation can be found at https://github.com/AllenNeuralDynamics/FORCEB-kv-refstacks-Cellpose/tree/main
This repository contains a version of the Cellpose nuclei model that has been retrained using SLAP2 data. The Cellpose model is a generalist algorithm for cell segmentation.
conda create -n cellpose python=3.12
conda activate cellpose
-
Create an environment:
/path/to/python3 -m venv cellpose
-
Activate the environment:
cd to C:\Users\ScanImage\Documents\GitHub\SLAP2-Cellpose cellpose\Scripts\activate
pip install -U --no-cache-dir git+https://www.github.com/mouseland/cellpose.git
python run.py --input <input_file_path> --output <output_directory_path>
python run.py --input /Users/caleb.shibu/Downloads/725018_20240326_163614_DMD1_merged.tif --output /Users/caleb.shibu/Desktop/test-cellpose
The output folder would have 2 files flows.tif
and masks_pred.tif
.
Cyto2 model gave the highest AUC value for CellProbabilty of 2 and FlowThreshold of 0.5. We used that to train cyto2 model with Voltage Imaging data and the AUC value improved for CellProbabilty of -1.0 and FlowThreshold of 0.5.