Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add strength input to Differential Diffusion #5709

Open
wants to merge 2 commits into
base: master
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
30 changes: 23 additions & 7 deletions comfy_extras/nodes_differential_diffusion.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,19 +5,27 @@
class DifferentialDiffusion():
@classmethod
def INPUT_TYPES(s):
return {"required": {"model": ("MODEL", ),
}}
return {
"required": {
"model": ("MODEL", ),
"strength": ("FLOAT", {
"default": 1.0,
"min": 0.0,
"max": 1.0
}),
}
}
RETURN_TYPES = ("MODEL",)
FUNCTION = "apply"
CATEGORY = "_for_testing"
INIT = False

def apply(self, model):
def apply(self, model, strength=1.0):
model = model.clone()
model.set_model_denoise_mask_function(self.forward)
return (model,)
model.set_model_denoise_mask_function(lambda *args, **kwargs: self.forward(*args, **kwargs, strength=strength))
return (model, )

def forward(self, sigma: torch.Tensor, denoise_mask: torch.Tensor, extra_options: dict):
def forward(self, sigma: torch.Tensor, denoise_mask: torch.Tensor, extra_options: dict, strength: float):
model = extra_options["model"]
step_sigmas = extra_options["sigmas"]
sigma_to = model.inner_model.model_sampling.sigma_min
Expand All @@ -31,7 +39,15 @@ def forward(self, sigma: torch.Tensor, denoise_mask: torch.Tensor, extra_options

threshold = (current_ts - ts_to) / (ts_from - ts_to)

return (denoise_mask >= threshold).to(denoise_mask.dtype)
# Generate the binary mask based on the threshold
binary_mask = (denoise_mask >= threshold).to(denoise_mask.dtype)

# Blend binary mask with the original denoise_mask using strength
if strength and strength < 1:
blended_mask = strength * binary_mask + (1 - strength) * denoise_mask
return blended_mask
else:
return binary_mask


NODE_CLASS_MAPPINGS = {
Expand Down
Loading