Skip to content

Update of Elman_RNN.py to pytorch 1.7.0 #6

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 2 commits into
base: master
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
35 changes: 14 additions & 21 deletions elman_rnn/Elman_RNN.py
Original file line number Diff line number Diff line change
@@ -1,13 +1,12 @@

import torch
from torch.autograd import Variable
import numpy as np
import torch.nn as nn
import pylab as pl
import torch.nn.init as init


torch.manual_seed(1)

dtype = torch.FloatTensor
dtype = torch.float32
input_size, hidden_size, output_size = 7, 6, 1
epochs = 200
seq_length = 20
Expand All @@ -17,54 +16,48 @@
data = np.sin(data_time_steps)
data.resize((seq_length + 1, 1))

x = Variable(torch.Tensor(data[:-1]).type(dtype), requires_grad=False)
y = Variable(torch.Tensor(data[1:]).type(dtype), requires_grad=False)
x = torch.tensor(data[:-1], dtype=dtype, requires_grad=False)
y = torch.tensor(data[1:], dtype=dtype, requires_grad=False)

w1 = torch.normal(0.0, 0.4, size=(input_size, hidden_size), dtype=dtype, requires_grad=True)
w2 = torch.normal(0.0, 0.3, size=(hidden_size, output_size), dtype=dtype, requires_grad=True)

w1 = torch.FloatTensor(input_size, hidden_size).type(dtype)
init.normal(w1, 0.0, 0.4)
w1 = Variable(w1, requires_grad=True)
w2 = torch.FloatTensor(hidden_size, output_size).type(dtype)
init.normal(w2, 0.0, 0.3)
w2 = Variable(w2, requires_grad=True)

def forward(input, context_state, w1, w2):
xh = torch.cat((input, context_state), 1)
context_state = torch.tanh(xh.mm(w1))
out = context_state.mm(w2)
return (out, context_state)

criterion = nn.MSELoss()
for i in range(epochs):
total_loss = 0
context_state = Variable(torch.zeros((1, hidden_size)).type(dtype), requires_grad=True)
context_state = torch.zeros((1, hidden_size), dtype=dtype)
for j in range(x.size(0)):
input = x[j:(j+1)]
target = y[j:(j+1)]
(pred, context_state) = forward(input, context_state, w1, w2)
loss = (pred - target).pow(2).sum()/2
loss = criterion(pred, target)
total_loss += loss
loss.backward()
loss.backward(retain_graph=True)
w1.data -= lr * w1.grad.data
w2.data -= lr * w2.grad.data
w1.grad.data.zero_()
w2.grad.data.zero_()
context_state = Variable(context_state.data)
if i % 10 == 0:
print("Epoch: {} loss {}".format(i, total_loss.data[0]))
print("Epoch: {} loss {}".format(i, total_loss.item()))


context_state = Variable(torch.zeros((1, hidden_size)).type(dtype), requires_grad=False)
context_state = torch.zeros((1, hidden_size), dtype=dtype)
predictions = []

for i in range(x.size(0)):
input = x[i:i+1]
(pred, context_state) = forward(input, context_state, w1, w2)
context_state = context_state
predictions.append(pred.data.numpy().ravel()[0])


pl.scatter(data_time_steps[:-1], x.data.numpy(), s=90, label="Actual")
pl.scatter(data_time_steps[1:], predictions, label="Predicted")
pl.legend()
pl.show()