Skip to content

cs-heibao/Classification_Task

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 

Repository files navigation

Classification_Task

Multi-Neural Networks

The project was implemented aims to realize three types rock thin section images classification. And the method was optimized based on GoogLeNet、VGG16、MobileNetV2、ShuffleNetV2.

Contents

Environment

- Driver: NVIDIA-Linux-x86_64-470.63.01.run
- CUDA: cuda_11.4.2_470.57.02_linux.run
- Torch 1.7.0+
- python 3.8

Preparation

  1. Prepare the dataset, we spyder the data from ScienceDB.

  2. Prepare the training dataset, the data structure as follow.

     $Data/                           # RootPath  
     
     $Data/sub-class folder                 # include images.   
    

Training

  1. Train your model on PASCAL VOC Format.

     cd $Classification_Task
     python3 googlenet-p-r-f1-lambda.py/googlenet-p-r-f1-lambda-rms.py/mobilenetv2-p-r-f1-lambda-rms.py
    
  2. Train results, it will create '.pth' model, loss log file and evaluation log file.

     # It will create model definition files and save snapshot models in:
     #   - $Classification_Task/weights/'{}_{}.pth'
     # the loss log and evaluation log saved in:
     #   - $Classification_Task/log/'{}'/loss.txt'.format(lstrftime('%b%d-%H'))
     #   - $RDNet/log/'{}'/result.txt'.format(lstrftime('%b%d-%H')
    

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages