The project was implemented aims to realize three types rock thin section images classification. And the method was optimized based on GoogLeNet、VGG16、MobileNetV2、ShuffleNetV2.
- Driver: NVIDIA-Linux-x86_64-470.63.01.run
- CUDA: cuda_11.4.2_470.57.02_linux.run
- Torch 1.7.0+
- python 3.8
-
Prepare the dataset, we spyder the data from ScienceDB.
-
Prepare the training dataset, the data structure as follow.
$Data/ # RootPath $Data/sub-class folder # include images.
-
Train your model on PASCAL VOC Format.
cd $Classification_Task python3 googlenet-p-r-f1-lambda.py/googlenet-p-r-f1-lambda-rms.py/mobilenetv2-p-r-f1-lambda-rms.py
-
Train results, it will create '.pth' model, loss log file and evaluation log file.
# It will create model definition files and save snapshot models in: # - $Classification_Task/weights/'{}_{}.pth' # the loss log and evaluation log saved in: # - $Classification_Task/log/'{}'/loss.txt'.format(lstrftime('%b%d-%H')) # - $RDNet/log/'{}'/result.txt'.format(lstrftime('%b%d-%H')