Skip to content

ddangchani/NFG-VAE

Repository files navigation

Learning semi-Markovian DAGs with flow-based VAE

  • Project proposed for M1399_000400-2023fall(Deep Learning) at Seoul National University

Overview

  • Learning Non-Gaussian linear SEMs with independent noise using IAF based VAE
  • Learning linear SEMs with dependent noise (i.e. semi-Markovian graph) using IAF based VAE

Environment

  • Python 3.8
  • Pytorch 2.1.0
  • networkx 2.8.7

Usage

To train the model, run the following command

  • Semi-Markovian DAGs
python train.py --dependence_type=1 --dependence_prop=0.3 --node_size=20 --seed=123 --flow_type='IAF'
  • Non-Gaussian DAGs
python train.py --dependence_type=0 --graph_dist='laplace' --node_size=20 --seed=123 --flow_type='IAF'

Possible noise_dist : 'normal', 'uniform', 'exponential', 'laplace', 'gumbel'

Paper

Code Sources

Code benefit from the following works

About

Learning semi-Markovian DAGs with flow-based VAE

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published