A pattern for an always on AI Assistant powered by Deepseek-V3, RealtimeSTT, and Typer for engineering
Checkout the demo where we walk through using this always-on-ai-assistant.
cp .env.sample .env
- Update with your keys
DEEPSEEK_API_KEY
andELEVEN_API_KEY
- Update with your keys
uv sync
- (optional) install python 3.11 (
uv python install 3.11
) - Install VS Code Tasks Runner extension (optional but recommended)
The Bob AI Assistant follows a structured workflow to help you with development tasks:
-
Awakening the Assistant
- The assistant starts in a listening state, ready to receive voice commands
- It uses RealtimeSTT to convert speech to text
- Commands are processed through Deepseek-V3 for understanding
-
Command Processing
- The assistant analyzes the command using the Typer command framework
- It determines the appropriate action based on the command structure
- Commands can be either direct execution or planning tasks
-
Task Execution
- For execution commands, the assistant:
- Generates the necessary code or configuration
- Updates the scratchpad with the current state
- Executes the command through the Typer interface
- For planning tasks, it:
- Creates a detailed plan in the scratchpad
- Waits for user confirmation before execution
- For execution commands, the assistant:
-
Feedback Loop
- The assistant maintains state in the scratchpad.md file
- You can review and modify the scratchpad between commands
- The assistant uses this context for subsequent commands
-
VS Code Integration
- Preconfigured tasks are available in VS Code:
- Agent: Awaken - Starts the assistant in execute mode
- Agent: Plan - Starts the assistant in planning mode
- Agent: Execute - Runs the assistant in execution mode
- Access these tasks through the VS Code Command Palette (Ctrl+Shift+P) or Task Runner
- Preconfigured tasks are available in VS Code:
The assistant uses a workspace configuration file (workspace_config.json
) to manage project settings:
{
"current_workspace": "your_workspace_name",
"workspaces": {
"your_workspace_name": {
"path": "/path/to/your/workspace",
"frameworks": {
"frontend": {
"type": "nextjs",
"root": "frontend"
},
"backend": {
"type": "django",
"root": "backend"
}
}
}
},
"exclude_dirs": [
"node_modules",
".venv",
"venv",
".git",
"dist",
"build",
"coverage",
".idea",
".vscode",
".cursor",
"api",
".next",
".cache"
],
"include_file_types": [
".js",
".jsx",
".ts",
".tsx",
".py",
".java",
".html",
".css",
".json"
]
}
-
show_config
- Displays the assistant configuration
- Usage:
show_config [--verbose]
- Options:
--verbose
: Show detailed configuration
-
list_files
- Lists files in a directory
- Usage:
list_files <path> [--all]
- Arguments:
path
: Path to list files from
- Options:
--all
: Include hidden files
-
diff_files
- Shows differences between two files
- Usage:
diff_files <file_a> <file_b> [--diff-only]
- Arguments:
file_a
: First file to comparefile_b
: Second file to compare
- Options:
--diff-only
: Show only differences
-
edit_file
- Opens a file for editing based on description
- Usage:
edit_file <file_description> [--workspace WORKSPACE]
- Arguments:
file_description
: Description of file to edit
- Options:
--workspace
: Specify workspace to use
The workspace supports both Next.js (frontend) and Django (backend) frameworks:
Next.js Features:
- Pages in
frontend/src/app
orfrontend/src/pages
- Layout files named
layout.tsx
- Page components named
page.tsx
- Configuration files in
frontend/src/app
orfrontend/src/config
- Static files in
frontend/public/
Django Features:
- Views in
backend/views.py
- URLs in
backend/urls.py
- Templates in
backend/templates/
- Static files in
backend/static/
- Configuration in
backend/settings.py
To use the Notion integration:
- Create a Notion integration at https://www.notion.so/my-integrations
- Copy the integration token
- Add the token to your
.env
file asNOTION_API_TOKEN
- Share your Notion database with the integration
- Copy your database ID (from the database URL) and add it to
.env
asNOTION_DATABASE_ID
The database ID is the part of your Notion database URL after the workspace name and before the question mark:
https://notion.so/workspace/83jk2h3d-721d-4892-8827-9e2d0b8f5d9e?v=...
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
This is your database ID
The integration expects a Notion database with the following properties:
- Title (title) - Bug report title
- Resolution Details (select) - Status of the bug
- Reporter (rich text) - Who reported the bug
- Description (rich text) - Detailed bug description
- Severity Level (select) - Bug severity
- Date Reported (date) - When the bug was reported
- Issue Type (select) - Type of issue (defaults to "Bug")
-
list_notion_tasks
- Lists all bugs from your Notion database
- Usage:
list_notion_tasks [--database-id ID] [--show-url] [--status STATUS]
- Options:
--database-id
: Optional Notion database ID (defaults to NOTION_DATABASE_ID env var)--show-url
: Show Notion page URLs for each task--status
: Filter bugs by status
-
create_bug_report
- Creates a new bug report in Notion
- Usage:
create_bug_report <title> [--description DESC] [--status STATUS]
- Arguments:
title
: Bug report title
- Options:
--description
: Detailed bug description--status
: Initial status
-
update_bug_status
- Updates the status of an existing bug
- Usage:
update_bug_status <bug_id> <new_status>
- Arguments:
bug_id
: Notion page ID of the bugnew_status
: New status to set
# List all bugs
python commands/template.py list-notion-tasks
# List bugs with URLs
python commands/template.py list-notion-tasks --show-url
# List bugs with specific status
python commands/template.py list-notion-tasks --status "Can't Reproduce"
# Create a new bug report
python commands/template.py create-bug-report "Login button not working" --description "Users cannot click the login button" --status "Open"
# Update bug status
python commands/template.py update-bug-status "83jk2h3d-721d-4892-8827-9e2d0b8f5d9e" "In Progress"
Required environment variables in your .env
file:
NOTION_API_TOKEN=your_integration_token_here
NOTION_DATABASE_ID=your_database_id_here
- LOCAL SPEECH TO TEXT: https://github.com/KoljaB/RealtimeSTT
- faster whisper (support for RealtimeSTT) https://github.com/SYSTRAN/faster-whisper
- whisper https://github.com/openai/whisper
- examples https://github.com/KoljaB/RealtimeSTT/blob/master/tests/realtimestt_speechendpoint_binary_classified.py
- elevenlabs voice models: https://elevenlabs.io/docs/developer-guides/models#older-models