-
Notifications
You must be signed in to change notification settings - Fork 3
Models
ugurcanarikan edited this page May 30, 2019
·
37 revisions
Embedding | Epochs | Hidden size | Learning rate | Mini batch size | rnn layers | f1-score | precision | recall | accuracy |
---|---|---|---|---|---|---|---|---|---|
GloVe | 150 | 32 | 0.15 | 16 | 2 | 0.7685 | 0.7706 | 0.7665 | 0.6241 |
fastText | 150 | 256 | 0.1 | 16 | 2 | 0.8042 | 0.8351 | 0.7755 | 0.6725 |
GloVe and fastText | 150 | 256 | 0.1 | 16 | 2 | 0.8334 | 0.8632 | 0.8056 | 0.7144 |
GloVe and fastText | 150 | 256 | 0.1 | 16 | 4 | 0.8319 | 0.8616 | 0.8041 | 0.7121 |
BERT |
Epochs | Hidden size | Mini batch size | rnn layers |
---|---|---|---|
150 | 256 | 16 | 2 |
Embedding | Learning r. | f1-score | precision | recall | accuracy | zor_cumleler accuracy |
---|---|---|---|---|---|---|
GloVe(50) | 0.05 | 0.8031 | 0.8217 | 0.7853 | 0.6709 | |
GloVe(50) | 0.1 | 0.7973 | 0.8379 | 0.7605 | 0.6630 | |
GloVe(50) | 0.15 | 0.7885 | 0.8276 | 0.7530 | 0.6509 | |
GloVe(50) | 0.2 | 0.7866 | 0.8306 | 0.7470 | 0.6482 | |
GloVe(300) | 0.2 | 0.8422 | 0.8709 | 0.8153 | 0.7274 | 0.55 |
fastText | 0.05 | 0.8178 | 0.8361 | 0.8003 | 0.6918 | |
fastText | 0.1 | 0.8042 | 0.8351 | 0.7755 | 0.6725 | |
fastText | 0.15 | 0.8115 | 0.8448 | 0.7808 | 0.6829 | |
fastText | 0.2 | 0.8323 | 0.8705 | 0.7973 | 0.7128 | 0.64 |
word2vec | 0.2 | 0.8339 | 0.8767 | 0.7950 | 0.7151 | 0.71 |
word2vec and fastText | 0.2 | 0.8364 | 0.8759 | 0.8003 | 0.7188 | 0.69 |
GloVe(50) and fastText | 0.05 | 0.8266 | 0.8471 | 0.8071 | 0.7045 | |
GloVe(50) and fastText | 0.1 | 0.8334 | 0.8632 | 0.8056 | 0.7144 | |
GloVe(50) and fastText | 0.15 | 0.8355 | 0.8625 | 0.8101 | 0.7174 | |
GloVe(50) and fastText | 0.2 | 0.8409 | 0.8769 | 0.8078 | 0.7256 | |
GloVe(300) and fastText | 0.05 | 0.8264 | 0.8542 | 0.8003 | 0.7041 | |
GloVe(300) and fastText | 0.1 | 0.8374 | 0.8648 | 0.8116 | 0.7202 | |
GloVe(300) and fastText | 0.15 | 0.8595 | 0.9116 | 0.8131 | 0.7537 | |
GloVe(300) and fastText | 0.2 | 0.8605 | 0.9055 | 0.8198 | 0.7552 | 0.66 |
GloVe(300) and word2vec | 0.2 | 0.8563 | 0.8979 | 0.8183 | 0.7486 | 0.67 |
GloVe(300) and fastText and word2vec | 0.1 | 0.8548 | 0.8983 | 0.8153 | 0.7464 | |
GloVe(300) and fastText and word2vec | 0.15 | 0.8597 | 0.9074 | 0.8168 | 0.7540 | |
GloVe(300) and fastText and word2vec | 0.2 | 0.8667 | 0.9156 | 0.8228 | 0.7648 | 0.65 |
Embedding | Learning r. | zor_cumleler accuracy |
---|---|---|
GloVe(300) | 0.2 | 0.55 |
fastText | 0.2 | 0.64 |
word2vec | 0.2 | 0.71 |
GloVe(300) and fastText | 0.2 | 0.66 |
GloVe(300) and word2vec | 0.2 | 0.67 |
fastText and word2vec | 0.2 | 0.69 |
GloVe(300) fastText and word2vec | 0.2 | 0.65 |
Google Docs | 0.34 | |
Microsoft Office | 0.29 | |
LibreOffice | 0.0 | |
ITU NLP Pipeline | 0.0 |
Those are the methods that don't use semantic analysis but follows the same syntactic rule.
Model 1: Always disjoint 'de/da', if the word ends with 'de' or 'da' mark it as having error
Model 2: Always joint 'de/da', if the word is 'de' or 'da' mark it as having error
Model | True positive | True negative | False positive | False negative | f1-score | precision | recall |
---|---|---|---|---|---|---|---|
Model 1 | 3521 | 6828 | 29692 | 10194 | 0.15 | 0.1060 | 0.2567 |
Model 2 | 10194 | 29692 | 6828 | 3521 | 0.6633 | 0.5989 | 0.7432 |