Skip to content

MobileNetV2-YoloV3-Nano: 0.5BFlops 3MB HUAWEI P40: 6ms/img, YoloFace-500k:0.1Bflops 420KB:fire::fire::fire:

License

Notifications You must be signed in to change notification settings

dog-qiuqiu/MobileNet-Yolo

Folders and files

NameName
Last commit message
Last commit date

Latest commit

86c05bf · Feb 6, 2021
Jun 22, 2020
Jul 21, 2020
Jul 27, 2020
Jul 17, 2020
Jun 22, 2020
Jun 22, 2020
Jun 22, 2020
Aug 27, 2020
Aug 16, 2020
Jun 22, 2020
Jun 22, 2020
Aug 21, 2020
Jun 22, 2020
Jun 22, 2020
Jul 21, 2020
Aug 16, 2020
Aug 21, 2020
Jun 22, 2020
Jun 22, 2020
Jun 22, 2020
Jun 22, 2020
Feb 6, 2021
Jul 3, 2020
Jun 22, 2020
Jun 22, 2020
Jun 22, 2020
Jun 22, 2020
Jun 22, 2020
Jun 22, 2020
Jun 22, 2020
Jun 22, 2020
Jun 22, 2020
Jun 22, 2020
Jun 22, 2020

Repository files navigation

2021.2.6 此项目不再更新,新项目地址: Yolo-Fastest: Faster and stronger https://github.com/dog-qiuqiu/Yolo-Fastest

image

***Darknet Group convolution is not well supported on some GPUs such as NVIDIA PASCAL!!!

针对某些Pascal显卡例如1080ti在darknet上 训练失败/训练异常缓慢/推理速度异常 的可以采用Pytorch版yolo3框架 训练/推理

MobileNetV2-YOLOv3-Lite&Nano Darknet

Mobile inference frameworks benchmark (4*ARM_CPU)

Network VOC mAP(0.5) COCO mAP(0.5) Resolution Inference time (NCNN/Kirin 990) Inference time (MNN arm82/Kirin 990) FLOPS Weight size
MobileNetV2-YOLOv3-Lite(our) 73.26 37.44 320 28.42 ms 18 ms 1.8BFlops 8.0MB
MobileNetV2-YOLOv3-Nano(our) 65.27 30.13 320 10.16 ms 5 ms 0.5BFlops 3.0MB
MobileNetV2-YOLOv3 70.7 & 352 32.15 ms & ms 2.44BFlops 14.4MB
MobileNet-SSD 72.7 & 300 26.37 ms & ms & BFlops 23.1MB
YOLOv5s & 56.2 416 150.5 ms & ms 13.2BFlops 28.1MB
YOLOv3-Tiny-Prn & 33.1 416 36.6 ms & ms 3.5BFlops 18.8MB
YOLOv4-Tiny & 40.2 416 44.6 ms & ms 6.9BFlops 23.1MB
YOLO-Nano 69.1 & 416 & ms & ms 4.57BFlops 4.0MB
  • Support mobile inference frameworks such as NCNN&MNN
  • The mnn benchmark only includes the forward inference time
  • The ncnn benchmark is the forward inference time + post-processing time(NMS...) of the convolution feature map.
  • Darknet Train Configuration: CUDA-version: 10010 (10020), cuDNN: 7.6.4,OpenCV version: 4 GPU:RTX2080ti

MobileNetV2-YOLOv3-Lite-COCO Test results

image

Application

Ultralight-SimplePose

image

YoloFace-500k: 500kb yolo-Face-Detection

Network Resolution Inference time (NCNN/Kirin 990) Inference time (MNN arm82/Kirin 990) FLOPS Weight size
UltraFace-version-RFB 320x240 &ms 3.36ms 0.1BFlops 1.3MB
UltraFace-version-Slim 320x240 &ms 3.06ms 0.1BFlops 1.2MB
yoloface-500k 320x256 5.5ms 2.4ms 0.1BFlops 0.52MB
yoloface-500k-v2 352x288 4.7ms &ms 0.1BFlops 0.42MB
  • 都500k了,要啥mAP:sunglasses:
  • Inference time (DarkNet/i7-6700):13ms
  • The mnn benchmark only includes the forward inference time
  • The ncnn benchmark is the forward inference time + post-processing time(NMS...) of the convolution feature map.

Wider Face Val

Model Easy Set Medium Set Hard Set
libfacedetection v1(caffe) 0.65 0.5 0.233
libfacedetection v2(caffe) 0.714 0.585 0.306
Retinaface-Mobilenet-0.25 (Mxnet) 0.745 0.553 0.232
version-slim-320 0.77 0.671 0.395
version-RFB-320 0.787 0.698 0.438
yoloface-500k-320 0.728 0.682 0.431
yoloface-500k-352-v2 0.768 0.729 0.490
  • yoloface-500k-v2:The SE&CSP module is added
  • V2 does not support MNN temporarily
  • wider_face_val(ap05): yoloface-500k: 53.75 yoloface-500k-v2: 56.69

YoloFace-500k Test results(thresh 0.7)

image

YoloFace-500k-v2 Test results(thresh 0.7)

image

YoloFace-50k: Sub-millisecond face detection model

Network Resolution Inference time (NCNN/Kirin 990) Inference time (MNN arm82/Kirin 990) Inference time (DarkNet/R3-3100) FLOPS Weight size
yoloface-50k 56x56 0.27ms 0.31ms 0.5 ms 0.001BFlops 46kb
  • For the close-range face detection model in a specific scene, the recommended detection distance is 1.5m

YoloFace-50k Test results(thresh 0.7)

image

YoloFace50k-landmark106(Ultra lightweight 106 point face-landmark model)

Network Resolution Inference time (NCNN/Kirin 990) Inference time (MNN arm82/Kirin 990) Weight size
landmark106 112x112 0.6ms 0.5ms 1.4MB
  • Face detection: yoloface-50k Landmark: landmark106

YoloFace50k-landmark106 Test results

image

Reference&Framework instructions&How to Train

  • https://github.com/AlexeyAB/darknet
  • You must use a pre-trained model to train your own data set. You can make a pre-trained model based on the weights of COCO training in this project to initialize the network parameters
  • 交流qq群:1062122604

About model selection

  • MobileNetV2-YOLOv3-SPP: Nvidia Jeston, Intel Movidius, TensorRT,NPU,OPENVINO...High-performance embedded side
  • MobileNetV2-YOLOv3-Lite: High Performance ARM-CPU,Qualcomm Adreno GPU, ARM82...High-performance mobile
  • MobileNetV2-YOLOv3-NANO: ARM-CPU...Computing resources are limited
  • MobileNetV2-YOLOv3-Fastest: ....... Can you do personal face detection???It’s better than nothing

NCNN conversion tutorial

NCNN C++ Sample

NCNN Android Sample

image

DarkNet2Caffe tutorial

Environmental requirements

  • Python2.7
  • python-opencv
  • Caffe(add upsample layer https://github.com/dog-qiuqiu/caffe)
  • You have to compile cpu version of caffe!!!
      cd darknet2caffe/
      python darknet2caffe.py MobileNetV2-YOLOv3-Nano-voc.cfg MobileNetV2-YOLOv3-Nano-voc.weights MobileNetV2-YOLOv3-Nano-voc.prototxt MobileNetV2-YOLOv3-Nano-voc.caffemodel
      cp MobileNetV2-YOLOv3-Nano-voc.prototxt sample
      cp MobileNetV2-YOLOv3-Nano-voc.caffemodel sample
      cd sample
      python detector.py
    

MNN conversion tutorial

  • Benchmark:https://www.yuque.com/mnn/cn/tool_benchmark
  • Convert darknet model to caffemodel through darknet2caffe
  • Manually replace the upsample layer in prototxt with the interp layer
  • Take the modification of MobileNetV2-YOLOv3-Nano-voc.prototxt as an example
	#layer {
	#    bottom: "layer71-route"
	#    top: "layer72-upsample"
	#    name: "layer72-upsample"
	#    type: "Upsample"
	#    upsample_param {
	#        scale: 2
	#    }
	#}
	layer {
	    bottom: "layer71-route"
	    top: "layer72-upsample"
	    name: "layer72-upsample"
	    type: "Interp"
	    interp_param {
		height:20  #upsample h size
		width:20   #upsample w size
	    }
	}

Thanks