Skip to content
/ daunet Public

DAUNet: Deep Augmented Neural Network for Pavement Crack Segmentation

Notifications You must be signed in to change notification settings

dvalex/daunet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

24 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DAUNet

Deep Augmented Neural Network for Pavement Crack Segmentation

This repository contains trained model reported in the paper:

V.Polovnikov, D. Alekseev, I. Vinogradov, G. Lashkia, DAUNet: Deep Augmented Neural Network for Pavement Crack Segmentation, IEEE Access, Vol.9, 2021. [https://ieeexplore.ieee.org/document/9531629]

INSTALLATION

git clone https://github.com/dvalex/daunet
cd daunet/python
pip install -r requirements.txt

DOWNLOAD DATASET & DATA PREPARATION

Unix users can use data/download.sh script to automate:

cd daunet/data
bash download.sh

Manual

For training: download crack500.zip from Google Drive Unzip it into data/cracks500 subfolder

For evaluating: download testcrop.zip from Google Drive Unzip it into data/testcrop subfolder

TRAINING

cd daunet/python
export SM_FRAMEWORK=tf.keras

First stage

python train.py

Second stage

python finetune.py

INFERENCE AND EVALUATION

To run inference at all images in directory (by default data/testcrop) run

cd daunet/python
python inference.py

After that one can calculate AIU, ODS, OIS, sODS, sOIS using matlab evaluation scripts

About

DAUNet: Deep Augmented Neural Network for Pavement Crack Segmentation

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published