Skip to content

Commit

Permalink
cleanup desc and news
Browse files Browse the repository at this point in the history
  • Loading branch information
tanho63 committed Sep 12, 2022
1 parent c1c3aa9 commit 37d592a
Show file tree
Hide file tree
Showing 3 changed files with 39 additions and 38 deletions.
14 changes: 7 additions & 7 deletions DESCRIPTION
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
Package: ffopportunity
Title: Models for Fantasy Football Expected Points
Version: 0.1.0.04
Version: 0.1.0.05
Authors@R: c(
person("Joe", "Sydlowski", , "[email protected]", role = c("aut", "cre", "cph")),
person("Tan", "Ho", , "[email protected]", role = "aut",
Expand All @@ -22,7 +22,7 @@ Imports:
hardhat (>= 0.1.0),
janitor (>= 1.0.0),
magrittr (>= 1.0.0),
nflreadr (>= 1.1.2),
nflreadr (>= 1.1.3),
purrr (>= 0.3.0),
rappdirs (>= 0.3.0),
recipes (>= 0.1.16),
Expand All @@ -35,14 +35,14 @@ Imports:
utils,
xgboost (>= 1.1)
Suggests:
arrow (>= 5.0.0),
covr,
curl,
piggyback (>= 0.1.1),
progressr (>= 0.8.0),
roxygen2 (>= 7.1.0),
testthat (>= 3.0.0),
piggyback (>= 0.1.1),
arrow (>= 5.0.0),
covr
testthat (>= 3.0.0)
Config/testthat/edition: 3
Encoding: UTF-8
Roxygen: list(markdown = TRUE)
RoxygenNote: 7.1.2
RoxygenNote: 7.2.1
6 changes: 3 additions & 3 deletions README.Rmd
Original file line number Diff line number Diff line change
Expand Up @@ -35,9 +35,9 @@ ffopportunity builds a dataframe of Expected Fantasy Points by preprocessing and

## About

Expected Fantasy Points are a measure of player opportunities in fantasy football - essentially aiming to quantify how many points the average player would score given a specific situation and opportunity. It uses xgboost and tidymodels trained on public nflverse data from {SEASONS 2006-2020} to do this.
Expected Fantasy Points are a measure of player opportunities in fantasy football - essentially aiming to quantify how many points the average player would score given a specific situation and opportunity. It uses xgboost and tidymodels trained on public nflverse data from 2006-2020 to do this.

For more on the modeling details, see: {MODELLING VIGNETTES}
For more on the modeling details, see the articles posted to this website: <https://ffopportunity.ffverse.com/articles/>

## Installation
<!--Install the stable version from CRAN with:
Expand All @@ -48,7 +48,7 @@ install.packages("ffopportunity")
Install the development version from GitHub with:

```{r eval = FALSE}
install.packages("ffopportunity", repos = "https://ffverse.r-universe.dev")
install.packages("ffopportunity", repos = c("https://ffverse.r-universe.dev", getOption("repos")))
# or use remotes/devtools
# install.packages("remotes")
Expand Down
57 changes: 29 additions & 28 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -29,10 +29,11 @@ automated GitHub releases.
Expected Fantasy Points are a measure of player opportunities in fantasy
football - essentially aiming to quantify how many points the average
player would score given a specific situation and opportunity. It uses
xgboost and tidymodels trained on public nflverse data from {SEASONS
2006-2020} to do this.
xgboost and tidymodels trained on public nflverse data from 2006-2020 to
do this.

For more on the modeling details, see: {MODELLING VIGNETTES}
For more on the modeling details, see the articles posted to this
website: <https://ffopportunity.ffverse.com/articles/>

## Installation

Expand All @@ -46,7 +47,7 @@ install.packages("ffopportunity")
Install the development version from GitHub with:

``` r
install.packages("ffopportunity", repos = "https://ffverse.r-universe.dev")
install.packages("ffopportunity", repos = c("https://ffverse.r-universe.dev", getOption("repos")))

# or use remotes/devtools
# install.packages("remotes")
Expand All @@ -63,31 +64,31 @@ follows:

``` r
library(ffopportunity)
#> Warning: package 'ffopportunity' was built under R version 4.2.1
ep_load(season = 2020:2021, type = "weekly")
#> > <ffopportunity predictions>
#> > Generated 2022-01-10 09:39:41 with ep model version "latest"
#> # A tibble: 11,529 x 159
#> season posteam week game_id player_id full_name position pass_attempt
#> <chr> <chr> <dbl> <chr> <chr> <chr> <chr> <dbl>
#> 1 2020 SF 1 2020_01_AR~ 00-00313~ Jimmy Garop~ QB 33
#> 2 2020 SF 1 2020_01_AR~ 00-00332~ George Kitt~ TE 0
#> 3 2020 ARI 1 2020_01_AR~ 00-00352~ Kyler Murray QB 39
#> 4 2020 ARI 1 2020_01_AR~ 00-00305~ DeAndre Hop~ WR 0
#> 5 2020 ARI 1 2020_01_AR~ 00-00229~ Larry Fitzg~ WR 0
#> 6 2020 ARI 1 2020_01_AR~ <NA> <NA> <NA> 0
#> 7 2020 SF 1 2020_01_AR~ 00-00316~ Raheem Most~ RB 0
#> 8 2020 ARI 1 2020_01_AR~ 00-00331~ Kenyan Drake RB 0
#> 9 2020 ARI 1 2020_01_AR~ 00-00347~ Christian K~ WR 0
#> 10 2020 SF 1 2020_01_AR~ 00-00332~ Trent Taylor WR 0
#> # ... with 11,519 more rows, and 151 more variables: rec_attempt <dbl>,
#> # rush_attempt <dbl>, pass_air_yards <dbl>, rec_air_yards <dbl>,
#> # pass_completions <dbl>, receptions <dbl>, pass_completions_exp <dbl>,
#> # receptions_exp <dbl>, pass_yards_gained <dbl>, rec_yards_gained <dbl>,
#> # rush_yards_gained <dbl>, pass_yards_gained_exp <dbl>,
#> # rec_yards_gained_exp <dbl>, rush_yards_gained_exp <dbl>,
#> # pass_touchdown <dbl>, rec_touchdown <dbl>, rush_touchdown <dbl>,
#> # pass_touchdown_exp <dbl>, rec_touchdown_exp <dbl>,
#> # rush_touchdown_exp <dbl>, ...
#> → <ffopportunity predictions>
#> → Generated 2022-09-12 12:59:18 with ep model version "latest"
#> # A tibble: 11,769 × 159
#> season posteam week game_id playe…¹ full_…² posit…³ pass_…⁴ rec_a…⁵ rush_…⁶
#> <chr> <chr> <dbl> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl>
#> 1 2020 SF 1 2020_01… 00-003… Jimmy … QB 33 0 1
#> 2 2020 SF 1 2020_01… 00-003… George… TE 0 5 1
#> 3 2020 ARI 1 2020_01… 00-003… Kyler … QB 39 0 11
#> 4 2020 ARI 1 2020_01… 00-003… DeAndr… WR 0 16 0
#> 5 2020 ARI 1 2020_01… 00-002… Larry … WR 0 5 0
#> 6 2020 ARI 1 2020_01… <NA> <NA> <NA> 0 2 0
#> 7 2020 SF 1 2020_01… 00-003… Raheem… RB 0 5 15
#> 8 2020 ARI 1 2020_01… 00-003… Kenyan… RB 0 2 16
#> 9 2020 ARI 1 2020_01… 00-003… Christ… WR 0 5 0
#> 10 2020 SF 1 2020_01… 00-003… Trent … WR 0 5 0
#> # … with 11,759 more rows, 149 more variables: pass_air_yards <dbl>,
#> # rec_air_yards <dbl>, pass_completions <dbl>, receptions <dbl>,
#> # pass_completions_exp <dbl>, receptions_exp <dbl>, pass_yards_gained <dbl>,
#> # rec_yards_gained <dbl>, rush_yards_gained <dbl>,
#> # pass_yards_gained_exp <dbl>, rec_yards_gained_exp <dbl>,
#> # rush_yards_gained_exp <dbl>, pass_touchdown <dbl>, rec_touchdown <dbl>,
#> # rush_touchdown <dbl>, pass_touchdown_exp <dbl>, rec_touchdown_exp <dbl>, …
#> # ℹ Use `print(n = ...)` to see more rows, and `colnames()` to see all variable names
```

You can also build EP from base nflverse data with `ep_build()` as
Expand Down

0 comments on commit 37d592a

Please sign in to comment.