A Python SDK for interacting with Google Security Operations products, currently supporting Chronicle/SecOps SIEM. This wraps the API for common use cases, including UDM searches, entity lookups, IoCs, alert management, case management, and detection rule management.
pip install secops
The SDK supports two main authentication methods:
The simplest and recommended way to authenticate the SDK. Application Default Credentials provide a consistent authentication method that works across different Google Cloud environments and local development.
There are several ways to use ADC:
# Login and set up application-default credentials
gcloud auth application-default login
Then in your code:
from secops import SecOpsClient
# Initialize with default credentials - no explicit configuration needed
client = SecOpsClient()
Set the environment variable pointing to your service account key:
export GOOGLE_APPLICATION_CREDENTIALS="/path/to/service-account.json"
Then in your code:
from secops import SecOpsClient
# Initialize with default credentials - will automatically use the credentials file
client = SecOpsClient()
When running on Google Cloud services (Compute Engine, Cloud Functions, Cloud Run, etc.), ADC works automatically without any configuration:
from secops import SecOpsClient
# Initialize with default credentials - will automatically use the service account
# assigned to your Google Cloud resource
client = SecOpsClient()
ADC will automatically try these authentication methods in order:
- Environment variable
GOOGLE_APPLICATION_CREDENTIALS
- Google Cloud SDK credentials (set by
gcloud auth application-default login
) - Google Cloud-provided service account credentials
- Local service account impersonation credentials
For more explicit control, you can authenticate using a service account. This can be done in two ways:
from secops import SecOpsClient
# Initialize with service account JSON file
client = SecOpsClient(service_account_path="/path/to/service-account.json")
from secops import SecOpsClient
# Service account details as a dictionary
service_account_info = {
"type": "service_account",
"project_id": "your-project-id",
"private_key_id": "key-id",
"private_key": "-----BEGIN PRIVATE KEY-----\n...",
"client_email": "[email protected]",
"client_id": "client-id",
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
"token_uri": "https://oauth2.googleapis.com/token",
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/..."
}
# Initialize with service account info
client = SecOpsClient(service_account_info=service_account_info)
After creating a SecOpsClient, you need to initialize the Chronicle-specific client:
# Initialize Chronicle client
chronicle = client.chronicle(
customer_id="your-chronicle-instance-id", # Your Chronicle instance ID
project_id="your-project-id", # Your GCP project ID
region="us" # Chronicle API region
)
Ingest raw logs directly into Chronicle:
from datetime import datetime, timezone
import json
# Create a sample log (this is an OKTA log)
current_time = datetime.now(timezone.utc).isoformat().replace('+00:00', 'Z')
okta_log = {
"actor": {
"displayName": "Joe Doe",
"alternateId": "[email protected]"
},
"client": {
"ipAddress": "192.168.1.100",
"userAgent": {
"os": "Mac OS X",
"browser": "SAFARI"
}
},
"displayMessage": "User login to Okta",
"eventType": "user.session.start",
"outcome": {
"result": "SUCCESS"
},
"published": current_time # Current time in ISO format
}
# Ingest the log using the default forwarder
result = chronicle.ingest_log(
log_type="OKTA", # Chronicle log type
log_message=json.dumps(okta_log) # JSON string of the log
)
print(f"Operation: {result.get('operation')}")
The SDK also supports non-JSON log formats. Here's an example with XML for Windows Event logs:
# Create a Windows Event XML log
xml_content = """<Event xmlns='http://schemas.microsoft.com/win/2004/08/events/event'>
<System>
<Provider Name='Microsoft-Windows-Security-Auditing' Guid='{54849625-5478-4994-A5BA-3E3B0328C30D}'/>
<EventID>4624</EventID>
<Version>1</Version>
<Level>0</Level>
<Task>12544</Task>
<Opcode>0</Opcode>
<Keywords>0x8020000000000000</Keywords>
<TimeCreated SystemTime='2024-05-10T14:30:00Z'/>
<EventRecordID>202117513</EventRecordID>
<Correlation/>
<Execution ProcessID='656' ThreadID='700'/>
<Channel>Security</Channel>
<Computer>WIN-SERVER.xyz.net</Computer>
<Security/>
</System>
<EventData>
<Data Name='SubjectUserSid'>S-1-0-0</Data>
<Data Name='SubjectUserName'>-</Data>
<Data Name='TargetUserName'>svcUser</Data>
<Data Name='WorkstationName'>CLIENT-PC</Data>
<Data Name='LogonType'>3</Data>
</EventData>
</Event>"""
# Ingest the XML log - no json.dumps() needed for XML
result = chronicle.ingest_log(
log_type="WINEVTLOG_XML", # Windows Event Log XML format
log_message=xml_content # Raw XML content
)
print(f"Operation: {result.get('operation')}")
The SDK supports all log types available in Chronicle. You can:
- View available log types:
# Get all available log types
log_types = chronicle.get_all_log_types()
for lt in log_types[:5]: # Show first 5
print(f"{lt.id}: {lt.description}")
- Search for specific log types:
# Search for log types related to firewalls
firewall_types = chronicle.search_log_types("firewall")
for lt in firewall_types:
print(f"{lt.id}: {lt.description}")
- Validate log types:
# Check if a log type is valid
if chronicle.is_valid_log_type("OKTA"):
print("Valid log type")
else:
print("Invalid log type")
- Use custom forwarders:
# Create or get a custom forwarder
forwarder = chronicle.get_or_create_forwarder(display_name="MyCustomForwarder")
forwarder_id = forwarder["name"].split("/")[-1]
# Use the custom forwarder for log ingestion
result = chronicle.ingest_log(
log_type="WINDOWS",
log_message=json.dumps(windows_log),
forwarder_id=forwarder_id
)
- Use custom timestamps:
from datetime import datetime, timedelta, timezone
# Define custom timestamps
log_entry_time = datetime.now(timezone.utc) - timedelta(hours=1)
collection_time = datetime.now(timezone.utc)
result = chronicle.ingest_log(
log_type="OKTA",
log_message=json.dumps(okta_log),
log_entry_time=log_entry_time, # When the log was generated
collection_time=collection_time # When the log was collected
)
Search for network connection events:
from datetime import datetime, timedelta, timezone
# Set time range for queries
end_time = datetime.now(timezone.utc)
start_time = end_time - timedelta(hours=24) # Last 24 hours
# Perform UDM search
results = chronicle.search_udm(
query="""
metadata.event_type = "NETWORK_CONNECTION"
ip != ""
""",
start_time=start_time,
end_time=end_time,
max_events=5
)
# Example response:
{
"events": [
{
"event": {
"metadata": {
"eventTimestamp": "2024-02-09T10:30:00Z",
"eventType": "NETWORK_CONNECTION"
},
"target": {
"ip": "192.168.1.100",
"port": 443
},
"principal": {
"hostname": "workstation-1"
}
}
}
],
"total_events": 1
}
Get statistics about network connections grouped by hostname:
stats = chronicle.get_stats(
query="""metadata.event_type = "NETWORK_CONNECTION"
match:
target.hostname
outcome:
$count = count(metadata.id)
order:
$count desc""",
start_time=start_time,
end_time=end_time,
max_events=1000,
max_values=10
)
# Example response:
{
"columns": ["hostname", "count"],
"rows": [
{"hostname": "server-1", "count": 1500},
{"hostname": "server-2", "count": 1200}
],
"total_rows": 2
}
Export specific fields to CSV format:
csv_data = chronicle.fetch_udm_search_csv(
query='metadata.event_type = "NETWORK_CONNECTION"',
start_time=start_time,
end_time=end_time,
fields=["timestamp", "user", "hostname", "process name"]
)
# Example response:
"""
metadata.eventTimestamp,principal.hostname,target.ip,target.port
2024-02-09T10:30:00Z,workstation-1,192.168.1.100,443
2024-02-09T10:31:00Z,workstation-2,192.168.1.101,80
"""
Validate a UDM query before execution:
query = 'target.ip != "" and principal.hostname = "test-host"'
validation = chronicle.validate_query(query)
# Example response:
{
"isValid": true,
"queryType": "QUERY_TYPE_UDM_QUERY",
"suggestedFields": [
"target.ip",
"principal.hostname"
]
}
Search for events using natural language instead of UDM query syntax:
from datetime import datetime, timedelta, timezone
# Set time range for queries
end_time = datetime.now(timezone.utc)
start_time = end_time - timedelta(hours=24) # Last 24 hours
# Option 1: Translate natural language to UDM query
udm_query = chronicle.translate_nl_to_udm("show me network connections")
print(f"Translated query: {udm_query}")
# Example output: 'metadata.event_type="NETWORK_CONNECTION"'
# Then run the query manually if needed
results = chronicle.search_udm(
query=udm_query,
start_time=start_time,
end_time=end_time
)
# Option 2: Perform complete search with natural language
results = chronicle.nl_search(
text="show me failed login attempts",
start_time=start_time,
end_time=end_time,
max_events=100
)
# Example response (same format as search_udm):
{
"events": [
{
"event": {
"metadata": {
"eventTimestamp": "2024-02-09T10:30:00Z",
"eventType": "USER_LOGIN"
},
"principal": {
"user": {
"userid": "jdoe"
}
},
"securityResult": {
"action": "BLOCK",
"summary": "Failed login attempt"
}
}
}
],
"total_events": 1
}
The natural language search feature supports various query patterns:
- "Show me network connections"
- "Find suspicious processes"
- "Show login failures in the last hour"
- "Display connections to IP address 192.168.1.100"
If the natural language cannot be translated to a valid UDM query, an APIError
will be raised with a message indicating that no valid query could be generated.
Get detailed information about specific entities:
# IP address summary
ip_summary = chronicle.summarize_entity(
start_time=start_time,
end_time=end_time,
value="192.168.1.100" # Automatically detects IP
)
# Domain summary
domain_summary = chronicle.summarize_entity(
start_time=start_time,
end_time=end_time,
value="example.com" # Automatically detects domain
)
# File hash summary
file_summary = chronicle.summarize_entity(
start_time=start_time,
end_time=end_time,
value="e17dd4eef8b4978673791ef4672f4f6a" # Automatically detects MD5
)
# Example response structure:
{
"entities": [
{
"name": "entities/...",
"metadata": {
"entityType": "ASSET",
"interval": {
"startTime": "2024-02-08T10:30:00Z",
"endTime": "2024-02-09T10:30:00Z"
}
},
"metric": {
"firstSeen": "2024-02-08T10:30:00Z",
"lastSeen": "2024-02-09T10:30:00Z"
},
"entity": {
"asset": {
"ip": ["192.168.1.100"]
}
}
}
],
"alertCounts": [
{
"rule": "Suspicious Network Connection",
"count": 5
}
],
"widgetMetadata": {
"detections": 5,
"total": 1000
}
}
Look up entities based on a UDM query:
# Search for a specific file hash across multiple UDM paths
md5_hash = "e17dd4eef8b4978673791ef4672f4f6a"
query = f'target.file.md5 = "{md5_hash}" OR principal.file.md5 = "{md5_hash}"'
entity_summaries = chronicle.summarize_entities_from_query(
query=query,
start_time=start_time,
end_time=end_time
)
# Example response:
[
{
"entities": [
{
"name": "entities/...",
"metadata": {
"entityType": "FILE",
"interval": {
"startTime": "2024-02-08T10:30:00Z",
"endTime": "2024-02-09T10:30:00Z"
}
},
"metric": {
"firstSeen": "2024-02-08T10:30:00Z",
"lastSeen": "2024-02-09T10:30:00Z"
},
"entity": {
"file": {
"md5": "e17dd4eef8b4978673791ef4672f4f6a",
"sha1": "da39a3ee5e6b4b0d3255bfef95601890afd80709",
"filename": "suspicious.exe"
}
}
}
]
}
]
Retrieve IoC matches against ingested events:
iocs = chronicle.list_iocs(
start_time=start_time,
end_time=end_time,
max_matches=1000,
add_mandiant_attributes=True,
prioritized_only=False
)
# Process the results
for ioc in iocs['matches']:
ioc_type = next(iter(ioc['artifactIndicator'].keys()))
ioc_value = next(iter(ioc['artifactIndicator'].values()))
print(f"IoC Type: {ioc_type}, Value: {ioc_value}")
print(f"Sources: {', '.join(ioc['sources'])}")
The IoC response includes:
- The indicator itself (domain, IP, hash, etc.)
- Sources and categories
- Affected assets in your environment
- First and last seen timestamps
- Confidence scores and severity ratings
- Associated threat actors and malware families (with Mandiant attributes)
Retrieve alerts and their associated cases:
# Get non-closed alerts
alerts = chronicle.get_alerts(
start_time=start_time,
end_time=end_time,
snapshot_query='feedback_summary.status != "CLOSED"',
max_alerts=100
)
# Get alerts from the response
alert_list = alerts.get('alerts', {}).get('alerts', [])
# Extract case IDs from alerts
case_ids = {alert.get('caseName') for alert in alert_list if alert.get('caseName')}
# Get case details
if case_ids:
cases = chronicle.get_cases(list(case_ids))
# Process cases
for case in cases.cases:
print(f"Case: {case.display_name}")
print(f"Priority: {case.priority}")
print(f"Status: {case.status}")
The alerts response includes:
- Progress status and completion status
- Alert counts (baseline and filtered)
- Alert details (rule information, detection details, etc.)
- Case associations
You can filter alerts using the snapshot query parameter with fields like:
detection.rule_name
detection.alert_state
feedback_summary.verdict
feedback_summary.priority
feedback_summary.status
The CaseList
class provides helper methods for working with cases:
# Get details for specific cases
cases = chronicle.get_cases(["case-id-1", "case-id-2"])
# Filter cases by priority
high_priority = cases.filter_by_priority("PRIORITY_HIGH")
# Filter cases by status
open_cases = cases.filter_by_status("STATUS_OPEN")
# Look up a specific case
case = cases.get_case("case-id-1")
The SDK provides comprehensive support for managing Chronicle detection rules:
Create new detection rules using YARA-L 2.0 syntax:
rule_text = """
rule simple_network_rule {
meta:
description = "Example rule to detect network connections"
author = "SecOps SDK Example"
severity = "Medium"
priority = "Medium"
yara_version = "YL2.0"
rule_version = "1.0"
events:
$e.metadata.event_type = "NETWORK_CONNECTION"
$e.principal.hostname != ""
condition:
$e
}
"""
# Create the rule
rule = chronicle.create_rule(rule_text)
rule_id = rule.get("name", "").split("/")[-1]
print(f"Rule ID: {rule_id}")
Retrieve, list, update, enable/disable, and delete rules:
# List all rules
rules = chronicle.list_rules()
for rule in rules.get("rules", []):
rule_id = rule.get("name", "").split("/")[-1]
enabled = rule.get("deployment", {}).get("enabled", False)
print(f"Rule ID: {rule_id}, Enabled: {enabled}")
# Get specific rule
rule = chronicle.get_rule(rule_id)
print(f"Rule content: {rule.get('text')}")
# Update rule
updated_rule = chronicle.update_rule(rule_id, updated_rule_text)
# Enable/disable rule
deployment = chronicle.enable_rule(rule_id, enabled=True) # Enable
deployment = chronicle.enable_rule(rule_id, enabled=False) # Disable
# Delete rule
chronicle.delete_rule(rule_id)
Run rules against historical data to find past matches:
from datetime import datetime, timedelta, timezone
# Set time range for retrohunt
end_time = datetime.now(timezone.utc)
start_time = end_time - timedelta(days=7) # Search past 7 days
# Create retrohunt
retrohunt = chronicle.create_retrohunt(rule_id, start_time, end_time)
operation_id = retrohunt.get("name", "").split("/")[-1]
# Check retrohunt status
retrohunt_status = chronicle.get_retrohunt(rule_id, operation_id)
is_complete = retrohunt_status.get("metadata", {}).get("done", False)
Monitor rule detections and execution errors:
# List detections for a rule
detections = chronicle.list_detections(rule_id)
for detection in detections.get("detections", []):
detection_id = detection.get("id", "")
event_time = detection.get("eventTime", "")
alerting = detection.get("alertState", "") == "ALERTING"
print(f"Detection: {detection_id}, Time: {event_time}, Alerting: {alerting}")
# List execution errors for a rule
errors = chronicle.list_errors(rule_id)
for error in errors.get("ruleExecutionErrors", []):
error_message = error.get("error_message", "")
create_time = error.get("create_time", "")
print(f"Error: {error_message}, Time: {create_time}")
Search for alerts generated by rules:
# Set time range for alert search
end_time = datetime.now(timezone.utc)
start_time = end_time - timedelta(days=7) # Search past 7 days
# Search for rule alerts
alerts_response = chronicle.search_rule_alerts(
start_time=start_time,
end_time=end_time,
page_size=10
)
# The API returns a nested structure where alerts are grouped by rule
# Extract and process all alerts from this structure
all_alerts = []
too_many_alerts = alerts_response.get('tooManyAlerts', False)
# Process the nested response structure - alerts are grouped by rule
for rule_alert in alerts_response.get('ruleAlerts', []):
# Extract rule metadata
rule_metadata = rule_alert.get('ruleMetadata', {})
rule_id = rule_metadata.get('properties', {}).get('ruleId', 'Unknown')
rule_name = rule_metadata.get('properties', {}).get('name', 'Unknown')
# Get alerts for this rule
rule_alerts = rule_alert.get('alerts', [])
# Process each alert
for alert in rule_alerts:
# Extract important fields
alert_id = alert.get("id", "")
detection_time = alert.get("detectionTimestamp", "")
commit_time = alert.get("commitTimestamp", "")
alerting_type = alert.get("alertingType", "")
print(f"Alert ID: {alert_id}")
print(f"Rule ID: {rule_id}")
print(f"Rule Name: {rule_name}")
print(f"Detection Time: {detection_time}")
# Extract events from the alert
if 'resultEvents' in alert:
for var_name, event_data in alert.get('resultEvents', {}).items():
if 'eventSamples' in event_data:
for sample in event_data.get('eventSamples', []):
if 'event' in sample:
event = sample['event']
# Process event data
event_type = event.get('metadata', {}).get('eventType', 'Unknown')
print(f"Event Type: {event_type}")
If tooManyAlerts
is True in the response, consider narrowing your search criteria using a smaller time window or more specific filters.
Manage curated rule sets:
# Define deployments for rule sets
deployments = [
{
"category_id": "category-uuid",
"rule_set_id": "ruleset-uuid",
"precision": "broad",
"enabled": True,
"alerting": False
}
]
# Update rule set deployments
chronicle.batch_update_curated_rule_set_deployments(deployments)
Validate a YARA-L2 rule before creating or updating it:
# Example rule
rule_text = """
rule test_rule {
meta:
description = "Test rule for validation"
author = "Test Author"
severity = "Low"
yara_version = "YL2.0"
rule_version = "1.0"
events:
$e.metadata.event_type = "NETWORK_CONNECTION"
condition:
$e
}
"""
# Validate the rule
result = chronicle.validate_rule(rule_text)
if result.success:
print("Rule is valid")
else:
print(f"Rule is invalid: {result.message}")
if result.position:
print(f"Error at line {result.position['startLine']}, column {result.position['startColumn']}")
The SDK defines several custom exceptions:
from secops.exceptions import SecOpsError, AuthenticationError, APIError
try:
results = chronicle.search_udm(...)
except AuthenticationError as e:
print(f"Authentication failed: {e}")
except APIError as e:
print(f"API request failed: {e}")
except SecOpsError as e:
print(f"General error: {e}")
The SDK automatically detects these entity types:
- IPv4 addresses
- MD5/SHA1/SHA256 hashes
- Domain names
- Email addresses
- MAC addresses
- Hostnames
Example of automatic detection:
# These will automatically use the correct field paths and value types
ip_summary = chronicle.summarize_entity(value="192.168.1.100")
domain_summary = chronicle.summarize_entity(value="example.com")
hash_summary = chronicle.summarize_entity(value="e17dd4eef8b4978673791ef4672f4f6a")
You can also override the automatic detection:
summary = chronicle.summarize_entity(
value="example.com",
field_path="custom.field.path", # Override automatic detection
value_type="DOMAIN_NAME" # Explicitly set value type
)
This project is licensed under the Apache License 2.0 - see the LICENSE file for details.