-
Notifications
You must be signed in to change notification settings - Fork 13
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
test: Adding integration tests for static utility to create vector em…
…beddings table.
- Loading branch information
1 parent
70c5018
commit c9d6259
Showing
1 changed file
with
145 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,145 @@ | ||
import pytest | ||
from google.cloud.spanner import Client, KeySet # type: ignore | ||
|
||
from langchain_google_spanner.vector_store import SpannerVectorStore, TableColumn | ||
|
||
project_id = "span-cloud-testing" | ||
instance = "vertex-vector-search-tests" | ||
google_database = "langchain-test" | ||
pg_database = "langchain-pg-db" | ||
table_name = "vectortest1" | ||
|
||
OPERATION_TIMEOUT_SECONDS = 240 | ||
|
||
|
||
@pytest.fixture(scope="module") | ||
def client() -> Client: | ||
return Client(project=project_id) | ||
|
||
@pytest.fixture(autouse=True) | ||
def cleanupGSQL(client): | ||
print("\nPerforming cleanup after each test...") | ||
|
||
database = client.instance(instance).database(google_database) | ||
operation = database.update_ddl([f"DROP TABLE IF EXISTS {table_name}"]) | ||
operation.result(OPERATION_TIMEOUT_SECONDS) | ||
|
||
yield | ||
|
||
# Code to perform teardown after each test goes here | ||
print("\nCleanup complete.") | ||
|
||
@pytest.fixture(autouse=True) | ||
def cleanupPGSQL(client): | ||
print("\nPerforming cleanup after each test...") | ||
|
||
database = client.instance(instance).database(pg_database) | ||
operation = database.update_ddl([f"DROP TABLE IF EXISTS {table_name}"]) | ||
operation.result(OPERATION_TIMEOUT_SECONDS) | ||
|
||
yield | ||
|
||
# Code to perform teardown after each test goes here | ||
print("\nCleanup complete.") | ||
|
||
|
||
|
||
class TestStaticUtilityGoogleSQL: | ||
@pytest.fixture(autouse=True) | ||
def setup_database(self, client): | ||
yield | ||
|
||
def test_init_vector_store_table1(self): | ||
SpannerVectorStore.init_vector_store_table( | ||
instance_id= instance, | ||
database_id= google_database, | ||
table_name= table_name, | ||
metadata_columns=[TableColumn(name="product_name", type="STRING(1024)", is_null=False) | ||
, TableColumn(name="title", type="STRING(1024)") | ||
, TableColumn(name="price", type="INT64")]) | ||
|
||
def test_init_vector_store_table2(self): | ||
SpannerVectorStore.init_vector_store_table( | ||
instance_id= instance, | ||
database_id= google_database, | ||
table_name= table_name, | ||
id_column= "custom_id1", | ||
content_column= "custom_content_id1", | ||
embedding_column= "custom_embedding_id1", | ||
metadata_columns=[TableColumn(name="product_name", type="STRING(1024)", is_null=False) | ||
, TableColumn(name="title", type="STRING(1024)") | ||
, TableColumn(name="price", type="INT64")]) | ||
|
||
def test_init_vector_store_table3(self): | ||
SpannerVectorStore.init_vector_store_table( | ||
instance_id= instance, | ||
database_id= google_database, | ||
table_name= table_name, | ||
id_column= TableColumn(name="product_id", type="STRING(1024)", is_null=False), | ||
embedding_column= TableColumn(name="custom_embedding_id1", type="ARRAY<FLOAT64>", is_null=True), | ||
metadata_columns=[TableColumn(name="product_name", type="STRING(1024)", is_null=False) | ||
, TableColumn(name="title", type="STRING(1024)") | ||
, TableColumn(name="metadata_json_column", type="JSON")]) | ||
|
||
def test_init_vector_store_table4(self): | ||
SpannerVectorStore.init_vector_store_table( | ||
instance_id= instance, | ||
database_id= google_database, | ||
table_name= table_name, | ||
id_column= TableColumn(name="product_id", type="STRING(1024)", is_null=False), | ||
embedding_column= TableColumn(name="custom_embedding_id1", type="ARRAY<FLOAT64>", is_null=True), | ||
metadata_columns=[TableColumn(name="product_name", type="STRING(1024)", is_null=False) | ||
, TableColumn(name="title", type="STRING(1024)") | ||
, TableColumn(name="metadata_json_column", type="JSON")], | ||
primary_key= "product_name, title, product_id") | ||
|
||
|
||
class TestStaticUtilityPGSQL: | ||
@pytest.fixture(autouse=True) | ||
def setup_database(self, client): | ||
yield | ||
|
||
def test_init_vector_store_table1(self): | ||
SpannerVectorStore.init_vector_store_table( | ||
instance_id= instance, | ||
database_id= pg_database, | ||
table_name= table_name, | ||
metadata_columns=[TableColumn(name="product_name", type="TEXT", is_null=False) | ||
, TableColumn(name="title", type="varchar(36)") | ||
, TableColumn(name="price", type="bigint")]) | ||
|
||
def test_init_vector_store_table2(self): | ||
SpannerVectorStore.init_vector_store_table( | ||
instance_id= instance, | ||
database_id= pg_database, | ||
table_name= table_name, | ||
id_column= "custom_id1", | ||
content_column= "custom_content_id1", | ||
embedding_column= "custom_embedding_id1", | ||
metadata_columns=[TableColumn(name="product_name", type="TEXT", is_null=False) | ||
, TableColumn(name="title", type="varchar(36)") | ||
, TableColumn(name="price", type="bigint")]) | ||
|
||
def test_init_vector_store_table3(self): | ||
SpannerVectorStore.init_vector_store_table( | ||
instance_id= instance, | ||
database_id= pg_database, | ||
table_name= table_name, | ||
id_column= TableColumn(name="product_id", type="varchar(36)", is_null=False), | ||
embedding_column= TableColumn(name="custom_embedding_id1", type="float8[]", is_null=True), | ||
metadata_columns=[TableColumn(name="product_name", type="TEXT", is_null=False) | ||
, TableColumn(name="title", type="varchar(36)") | ||
, TableColumn(name="price", type="bigint")]) | ||
|
||
def test_init_vector_store_table4(self): | ||
SpannerVectorStore.init_vector_store_table( | ||
instance_id= instance, | ||
database_id= pg_database, | ||
table_name= table_name, | ||
id_column= TableColumn(name="product_id", type="varchar(36)", is_null=False), | ||
embedding_column= TableColumn(name="custom_embedding_id1", type="float8[]", is_null=True), | ||
metadata_columns=[TableColumn(name="product_name", type="TEXT", is_null=False) | ||
, TableColumn(name="title", type="varchar(36)") | ||
, TableColumn(name="price", type="bigint")], | ||
primary_key= "product_name, title, product_id") | ||
|