Skip to content

graspnet/AnyDexGrasp

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

14 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

AnyDexGrasp

Dexterous grasp pose detection network built upon MinkowskiEngine.

Requirements

Installation

  1. Follow MinkowskiEngine instructions to install Anaconda, cudatoolkit, Pytorch and MinkowskiEngine.Note that you need export MAX_JOBS=2; before pip install due to this issue

  2. Install other requirements from Pip.

    pip install -r requirements.txt
  1. Install knn module.
    cd knn
    python setup.py install
  1. Install pointnet2 module.
    cd pointnet2
    python setup.py install
  1. Install ur toolbox.
    cd ur_toolbox
    pip install .
    cd python-urx
    pip install .
    pip install -r requirements.txt
  1. Install Allegro Hand.

    Install Allegro Hand upon Allegro-Hand-Controller-DIME.

  2. Download model weights and data at GoogleDrive and put it under logs/ and extract zip files in logs/data/representation_model/graspnet_v1_newformat/ to logs/data/representation_model/graspnet_v1_newformat/.
    Download the data from the Graspnet web page and extract it to logs/data/representation_model/graspnet_v1_newformat/

Generating the STL file for dexterous hand.

    python command_generate_mesh_file.sh

Training

    sh command_train_representation.sh # Representation model
    sh command_train_decision.sh # Decision model

Collecting data

    python realsense.py
    sh command_collect_multifinger_grasp_data.sh

Robot grasp

    python realsense.py
    sh command_robot_multifinger_grasp.sh

License

The code is licensed under CC BY-NC 4.0 for non-commercial purposes.

Bibtex

If you find the code useful, please consider citing our paper

        @article{fang2025anydexgrasp,
          title={AnyDexGrasp: General Dexterous Grasping for Different Hands with Human-level Learning Efficiency},
          author={Fang, Hao-Shu and Yan, Hengxu and Tang, Zhenyu and Fang, Hongjie and Wang, Chenxi and Lu, Cewu},
          journal={arXiv preprint arXiv:2502.16420},
          year={2025}
        }