Dexterous grasp pose detection network built upon MinkowskiEngine.
- Anaconda with Python 3.8
- PyTorch 1.13 with CUDA 11.7
- MinkowskiEngine v0.5
-
Follow MinkowskiEngine instructions to install Anaconda, cudatoolkit, Pytorch and MinkowskiEngine.Note that you need
export MAX_JOBS=2;
beforepip install
due to this issue -
Install other requirements from Pip.
pip install -r requirements.txt
- Install
knn
module.
cd knn
python setup.py install
- Install
pointnet2
module.
cd pointnet2
python setup.py install
- Install ur toolbox.
cd ur_toolbox
pip install .
cd python-urx
pip install .
pip install -r requirements.txt
-
Install Allegro Hand.
Install Allegro Hand upon Allegro-Hand-Controller-DIME.
-
Download model weights and data at GoogleDrive and put it under
logs/
and extract zip files inlogs/data/representation_model/graspnet_v1_newformat/
tologs/data/representation_model/graspnet_v1_newformat/
.
Download the data from the Graspnet web page and extract it tologs/data/representation_model/graspnet_v1_newformat/
python command_generate_mesh_file.sh
sh command_train_representation.sh # Representation model
sh command_train_decision.sh # Decision model
python realsense.py
sh command_collect_multifinger_grasp_data.sh
python realsense.py
sh command_robot_multifinger_grasp.sh
The code is licensed under CC BY-NC 4.0 for non-commercial purposes.
If you find the code useful, please consider citing our paper
@article{fang2025anydexgrasp,
title={AnyDexGrasp: General Dexterous Grasping for Different Hands with Human-level Learning Efficiency},
author={Fang, Hao-Shu and Yan, Hengxu and Tang, Zhenyu and Fang, Hongjie and Wang, Chenxi and Lu, Cewu},
journal={arXiv preprint arXiv:2502.16420},
year={2025}
}