Skip to content

A unified library for object tracking featuring clean room re-implementations of leading multi-object tracking algorithms

License

Notifications You must be signed in to change notification settings

hacksparrow/trackers

 
 

Repository files navigation

trackers

trackers logo

version license python-version

colab discord

Hello

trackers is a unified library offering clean room re-implementations of leading multi-object tracking algorithms. Its modular design allows you to easily swap trackers and integrate them with object detectors from various libraries like inference, ultralytics, or transformers.

Tracker Paper MOTA Year Status Colab
SORT arXiv 74.6 2016 colab
DeepSORT arXiv 75.4 2017 colab
ByteTrack arXiv 77.8 2021 🚧 🚧
OC-SORT arXiv 75.9 2022 🚧 🚧
BoT-SORT arXiv 77.8 2022 🚧 🚧
trackers-2.0.0-promo.mp4

Installation

Pip install the trackers package in a Python>=3.9 environment.

pip install trackers
install from source

By installing trackers from source, you can explore the most recent features and enhancements that have not yet been officially released. Please note that these updates are still in development and may not be as stable as the latest published release.

pip install git+https://github.com/roboflow/trackers.git

Quickstart

With a modular design, trackers lets you combine object detectors from different libraries with the tracker of your choice. Here's how you can use SORTTracker with various detectors:

import supervision as sv
from trackers import SORTTracker
from inference import get_model

tracker = SORTTracker()
model = get_model(model_id="yolov11m-640")
annotator = sv.LabelAnnotator(text_position=sv.Position.CENTER)

def callback(frame, _):
    result = model.infer(frame)[0]
    detections = sv.Detections.from_inference(result)
    detections = tracker.update(detections)
    return annotator.annotate(frame, detections, labels=detections.tracker_id)

sv.process_video(
    source_path="input.mp4",
    target_path="output.mp4",
    callback=callback,
)
run with ultralytics
import supervision as sv
from trackers import SORTTracker
from ultralytics import YOLO

tracker = SORTTracker()
model = YOLO("yolo11m.pt")
annotator = sv.LabelAnnotator(text_position=sv.Position.CENTER)

def callback(frame, _):
    result = model(frame)[0]
    detections = sv.Detections.from_ultralytics(result)
    detections = tracker.update(detections)
    return annotator.annotate(frame, detections, labels=detections.tracker_id)

sv.process_video(
    source_path="input.mp4",
    target_path="output.mp4",
    callback=callback,
)
run with transformers
import torch
import supervision as sv
from trackers import SORTTracker
from transformers import RTDetrV2ForObjectDetection, RTDetrImageProcessor

tracker = SORTTracker()
image_processor = RTDetrImageProcessor.from_pretrained("PekingU/rtdetr_v2_r18vd")
model = RTDetrV2ForObjectDetection.from_pretrained("PekingU/rtdetr_v2_r18vd")
annotator = sv.LabelAnnotator(text_position=sv.Position.CENTER)

def callback(frame, _):
    inputs = image_processor(images=frame, return_tensors="pt")
    with torch.no_grad():
        outputs = model(**inputs)

    h, w, _ = frame.shape
    results = image_processor.post_process_object_detection(
        outputs,
        target_sizes=torch.tensor([(h, w)]),
        threshold=0.5
    )[0]

    detections = sv.Detections.from_transformers(
        transformers_results=results,
        id2label=model.config.id2label
    )

    detections = tracker.update(detections)
    return annotator.annotate(frame, detections, labels=detections.tracker_id)

sv.process_video(
    source_path="input.mp4",
    target_path="output.mp4",
    callback=callback,
)

License

The code is released under the Apache 2.0 license.

Contribution

We welcome all contributions—whether it’s reporting issues, suggesting features, or submitting pull requests. Please read our contributor guidelines to learn about our processes and best practices.

About

A unified library for object tracking featuring clean room re-implementations of leading multi-object tracking algorithms

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%