Skip to content

[train_text_to_image_lora] Better image interpolation in training scripts follow up #11427

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
20 changes: 18 additions & 2 deletions examples/text_to_image/train_text_to_image_lora.py
Original file line number Diff line number Diff line change
Expand Up @@ -418,6 +418,15 @@ def parse_args():
default=4,
help=("The dimension of the LoRA update matrices."),
)
parser.add_argument(
"--image_interpolation_mode",
type=str,
default="lanczos",
choices=[
f.lower() for f in dir(transforms.InterpolationMode) if not f.startswith("__") and not f.endswith("__")
],
help="The image interpolation method to use for resizing images.",
)

args = parser.parse_args()
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
Expand Down Expand Up @@ -649,10 +658,17 @@ def tokenize_captions(examples, is_train=True):
)
return inputs.input_ids

# Preprocessing the datasets.
# Get the specified interpolation method from the args
interpolation = getattr(transforms.InterpolationMode, args.image_interpolation_mode.upper(), None)

# Raise an error if the interpolation method is invalid
if interpolation is None:
raise ValueError(f"Unsupported interpolation mode {args.image_interpolation_mode}.")

# Data preprocessing transformations
train_transforms = transforms.Compose(
[
transforms.Resize(args.resolution, interpolation=transforms.InterpolationMode.BILINEAR),
transforms.Resize(args.resolution, interpolation=interpolation), # Use dynamic interpolation method
transforms.CenterCrop(args.resolution) if args.center_crop else transforms.RandomCrop(args.resolution),
transforms.RandomHorizontalFlip() if args.random_flip else transforms.Lambda(lambda x: x),
transforms.ToTensor(),
Expand Down
Loading