-
Notifications
You must be signed in to change notification settings - Fork 381
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
164 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,162 @@ | ||
module Control.Algebra.Laws | ||
|
||
import Prelude | ||
import Control.Algebra | ||
|
||
%default total | ||
|
||
-- Monoids | ||
|
||
||| Inverses are unique. | ||
public export | ||
uniqueInverse : VMonoid ty => (x, y, z : ty) -> | ||
y <+> x = neutral {ty} -> x <+> z = neutral {ty} -> y = z | ||
uniqueInverse x y z p q = | ||
rewrite sym $ monoidNeutralIsNeutralL y in | ||
rewrite sym q in | ||
rewrite semigroupOpIsAssociative y x z in | ||
rewrite p in | ||
rewrite monoidNeutralIsNeutralR z in | ||
Refl | ||
|
||
-- Groups | ||
|
||
||| Only identity is self-squaring. | ||
public export | ||
selfSquareId : VGroup ty => (x : ty) -> | ||
x <+> x = x -> x = neutral {ty} | ||
|
||
||| Inverse elements commute. | ||
public export | ||
inverseCommute : VGroup ty => (x, y : ty) -> | ||
y <+> x = neutral {ty} -> x <+> y = neutral {ty} | ||
|
||
||| Every element has a right inverse. | ||
public export | ||
groupInverseIsInverseL : VGroup ty => (x : ty) -> | ||
x <+> inverse x = neutral {ty} | ||
|
||
||| -(-x) = x | ||
public export | ||
inverseSquaredIsIdentity : VGroup ty => (x : ty) -> | ||
inverse (inverse x) = x | ||
|
||
||| If every square in a group is identity, the group is commutative. | ||
public export | ||
squareIdCommutative : VGroup ty => (x, y : ty) -> | ||
((a : ty) -> a <+> a = neutral {ty}) -> | ||
x <+> y = y <+> x | ||
|
||
||| -0 = 0 | ||
public export | ||
inverseNeutralIsNeutral : VGroup ty => | ||
inverse (neutral {ty}) = neutral {ty} | ||
|
||
||| -(x + y) = -y + -x | ||
public export | ||
inverseOfSum : VGroup ty => (l, r : ty) -> | ||
inverse (l <+> r) = inverse r <+> inverse l | ||
|
||
||| y = z if x + y = x + z | ||
public export | ||
cancelLeft : VGroup ty => (x, y, z : ty) -> | ||
x <+> y = x <+> z -> y = z | ||
cancelLeft x y z p = | ||
rewrite sym $ monoidNeutralIsNeutralR y in | ||
rewrite sym $ groupInverseIsInverseR x in | ||
rewrite sym $ semigroupOpIsAssociative (inverse x) x y in | ||
rewrite p in | ||
rewrite semigroupOpIsAssociative (inverse x) x z in | ||
rewrite groupInverseIsInverseR x in | ||
monoidNeutralIsNeutralR z | ||
|
||
||| y = z if y + x = z + x. | ||
public export | ||
cancelRight : VGroup ty => (x, y, z : ty) -> | ||
y <+> x = z <+> x -> y = z | ||
|
||
||| ab = 0 -> a = b^-1 | ||
public export | ||
neutralProductInverseR : VGroup ty => (a, b : ty) -> | ||
a <+> b = neutral {ty} -> a = inverse b | ||
|
||
||| ab = 0 -> a^-1 = b | ||
public export | ||
neutralProductInverseL : VGroup ty => (a, b : ty) -> | ||
a <+> b = neutral {ty} -> inverse a = b | ||
neutralProductInverseL a b prf = | ||
cancelLeft a (inverse a) b $ | ||
trans (groupInverseIsInverseL a) $ sym prf | ||
|
||
||| For any a and b, ax = b and ya = b have solutions. | ||
public export | ||
latinSquareProperty : VGroup ty => (a, b : ty) -> | ||
((x : ty ** a <+> x = b), | ||
(y : ty ** y <+> a = b)) | ||
|
||
||| For any a, b, x, the solution to ax = b is unique. | ||
public export | ||
uniqueSolutionR : VGroup ty => (a, b, x, y : ty) -> | ||
a <+> x = b -> a <+> y = b -> x = y | ||
uniqueSolutionR a b x y p q = cancelLeft a x y $ trans p (sym q) | ||
|
||
||| For any a, b, y, the solution to ya = b is unique. | ||
public export | ||
uniqueSolutionL : VGroup t => (a, b, x, y : t) -> | ||
x <+> a = b -> y <+> a = b -> x = y | ||
uniqueSolutionL a b x y p q = cancelRight a x y $ trans p (sym q) | ||
|
||
||| -(x + y) = -x + -y | ||
public export | ||
inverseDistributesOverGroupOp : AbelianGroup ty => (l, r : ty) -> | ||
inverse (l <+> r) = inverse l <+> inverse r | ||
inverseDistributesOverGroupOp l r = | ||
rewrite groupOpIsCommutative (inverse l) (inverse r) in | ||
inverseOfSum l r | ||
|
||
||| Homomorphism preserves neutral. | ||
public export | ||
homoNeutral : GroupHomomorphism a b => | ||
to (neutral {ty=a}) = neutral {ty=b} | ||
|
||
||| Homomorphism preserves inverses. | ||
public export | ||
homoInverse : GroupHomomorphism a b => (x : a) -> | ||
the b (to $ inverse x) = the b (inverse $ to x) | ||
|
||
-- Rings | ||
|
||
||| 0x = x | ||
public export | ||
multNeutralAbsorbingL : VRing ty => (r : ty) -> | ||
neutral {ty} <.> r = neutral {ty} | ||
|
||
||| x0 = 0 | ||
public export | ||
multNeutralAbsorbingR : VRing ty => (l : ty) -> | ||
l <.> neutral {ty} = neutral {ty} | ||
|
||
||| (-x)y = -(xy) | ||
public export | ||
multInverseInversesL : VRing ty => (l, r : ty) -> | ||
inverse l <.> r = inverse (l <.> r) | ||
|
||
||| x(-y) = -(xy) | ||
public export | ||
multInverseInversesR : VRing ty => (l, r : ty) -> | ||
l <.> inverse r = inverse (l <.> r) | ||
|
||
||| (-x)(-y) = xy | ||
public export | ||
multNegativeByNegativeIsPositive : VRing ty => (l, r : ty) -> | ||
inverse l <.> inverse r = l <.> r | ||
|
||
||| (-1)x = -x | ||
public export | ||
inverseOfUnityR : VRingWithUnity ty => (x : ty) -> | ||
inverse (unity {ty}) <.> x = inverse x | ||
|
||
||| x(-1) = -x | ||
public export | ||
inverseOfUnityL : VRingWithUnity ty => (x : ty) -> | ||
x <.> inverse (unity {ty}) = inverse x |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters