-
Notifications
You must be signed in to change notification settings - Fork 381
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
334 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,332 @@ | ||
module Control.Algebra.Laws | ||
|
||
import Prelude | ||
import Control.Algebra | ||
|
||
%default total | ||
|
||
-- Monoids | ||
|
||
||| Inverses are unique. | ||
public export | ||
uniqueInverse : VMonoid ty => (x, y, z : ty) -> | ||
y <+> x = neutral {ty} -> x <+> z = neutral {ty} -> y = z | ||
uniqueInverse x y z p q = | ||
rewrite sym $ monoidNeutralIsNeutralL y in | ||
rewrite sym q in | ||
rewrite semigroupOpIsAssociative y x z in | ||
rewrite p in | ||
rewrite monoidNeutralIsNeutralR z in | ||
Refl | ||
|
||
-- Groups | ||
|
||
||| Only identity is self-squaring. | ||
public export | ||
selfSquareId : VGroup ty => (x : ty) -> | ||
x <+> x = x -> x = neutral {ty} | ||
-- selfSquareId x p = | ||
-- rewrite sym $ monoidNeutralIsNeutralR x in | ||
-- rewrite sym $ groupInverseIsInverseR x in | ||
-- rewrite sym $ semigroupOpIsAssociative (inverse x) x x in | ||
-- rewrite p in | ||
-- Refl | ||
|
||
||| Inverse elements commute. | ||
public export | ||
inverseCommute : VGroup ty => (x, y : ty) -> | ||
y <+> x = neutral {ty} -> x <+> y = neutral {ty} | ||
-- inverseCommute x y p = selfSquareId (x <+> y) prop where | ||
-- prop : (x <+> y) <+> (x <+> y) = x <+> y | ||
-- prop = | ||
-- rewrite sym $ semigroupOpIsAssociative x y (x <+> y) in | ||
-- rewrite semigroupOpIsAssociative y x y in | ||
-- rewrite p in | ||
-- rewrite monoidNeutralIsNeutralR y in | ||
-- Refl | ||
|
||
||| Every element has a right inverse. | ||
public export | ||
groupInverseIsInverseL : VGroup ty => (x : ty) -> | ||
x <+> inverse x = neutral {ty} | ||
-- groupInverseIsInverseL x = | ||
-- inverseCommute x (inverse x) (groupInverseIsInverseR x) | ||
|
||
||| -(-x) = x | ||
public export | ||
inverseSquaredIsIdentity : VGroup ty => (x : ty) -> | ||
inverse (inverse x) = x | ||
-- inverseSquaredIsIdentity x = | ||
-- let x' = inverse x in | ||
-- uniqueInverse | ||
-- x' | ||
-- (inverse x') | ||
-- x | ||
-- (groupInverseIsInverseR x') | ||
-- (groupInverseIsInverseR x) | ||
|
||
||| If every square in a group is identity, the group is commutative. | ||
public export | ||
squareIdCommutative : VGroup ty => (x, y : ty) -> | ||
((a : ty) -> a <+> a = neutral {ty}) -> | ||
x <+> y = y <+> x | ||
-- squareIdCommutative x y p = | ||
-- let | ||
-- xy = x <+> y | ||
-- yx = y <+> x | ||
-- in | ||
-- uniqueInverse xy xy yx (p xy) prop where | ||
-- prop : (x <+> y) <+> (y <+> x) = A.neutral | ||
-- prop = | ||
-- rewrite sym $ semigroupOpIsAssociative x y (y <+> x) in | ||
-- rewrite semigroupOpIsAssociative y y x in | ||
-- rewrite p y in | ||
-- rewrite monoidNeutralIsNeutralR x in | ||
-- p x | ||
|
||
||| -0 = 0 | ||
public export | ||
inverseNeutralIsNeutral : VGroup ty => | ||
inverse (neutral {ty}) = neutral {ty} | ||
-- inverseNeutralIsNeutral {ty} = | ||
-- let e = neutral {ty} in | ||
-- rewrite sym $ cong {f = inverse} (groupInverseIsInverseL e) in | ||
-- rewrite monoidNeutralIsNeutralR $ inverse e in | ||
-- inverseSquaredIsIdentity e | ||
|
||
||| -(x + y) = -y + -x | ||
public export | ||
inverseOfSum : VGroup ty => (l, r : ty) -> | ||
inverse (l <+> r) = inverse r <+> inverse l | ||
-- inverseOfSum {ty} l r = | ||
-- let | ||
-- e = neutral {ty} | ||
-- il = inverse l | ||
-- ir = inverse r | ||
-- lr = l <+> r | ||
-- ilr = inverse lr | ||
-- iril = ir <+> il | ||
-- ile = il <+> e | ||
-- in | ||
-- -- expand | ||
-- rewrite sym $ monoidNeutralIsNeutralR ilr in | ||
-- rewrite sym $ groupInverseIsInverseR r in | ||
-- rewrite sym $ monoidNeutralIsNeutralL ir in | ||
-- rewrite sym $ groupInverseIsInverseR l in | ||
-- -- shuffle | ||
-- rewrite semigroupOpIsAssociative ir il l in | ||
-- rewrite sym $ semigroupOpIsAssociative iril l r in | ||
-- rewrite sym $ semigroupOpIsAssociative iril lr ilr in | ||
-- -- contract | ||
-- rewrite sym $ monoidNeutralIsNeutralL il in | ||
-- rewrite groupInverseIsInverseL lr in | ||
-- rewrite sym $ semigroupOpIsAssociative (ir <+> ile) l ile in | ||
-- rewrite semigroupOpIsAssociative l il e in | ||
-- rewrite groupInverseIsInverseL l in | ||
-- rewrite monoidNeutralIsNeutralL e in | ||
-- Refl | ||
|
||
||| y = z if x + y = x + z | ||
public export | ||
cancelLeft : VGroup ty => (x, y, z : ty) -> | ||
x <+> y = x <+> z -> y = z | ||
cancelLeft x y z p = | ||
rewrite sym $ monoidNeutralIsNeutralR y in | ||
rewrite sym $ groupInverseIsInverseR x in | ||
rewrite sym $ semigroupOpIsAssociative (inverse x) x y in | ||
rewrite p in | ||
rewrite semigroupOpIsAssociative (inverse x) x z in | ||
rewrite groupInverseIsInverseR x in | ||
monoidNeutralIsNeutralR z | ||
|
||
||| y = z if y + x = z + x. | ||
public export | ||
cancelRight : VGroup ty => (x, y, z : ty) -> | ||
y <+> x = z <+> x -> y = z | ||
-- cancelRight x y z p = | ||
-- rewrite sym $ monoidNeutralIsNeutralL y in | ||
-- rewrite sym $ groupInverseIsInverseL x in | ||
-- rewrite semigroupOpIsAssociative y x (inverse x) in | ||
-- rewrite p in | ||
-- rewrite sym $ semigroupOpIsAssociative z x (inverse x) in | ||
-- rewrite groupInverseIsInverseL x in | ||
-- monoidNeutralIsNeutralL z | ||
|
||
||| ab = 0 -> a = b^-1 | ||
public export | ||
neutralProductInverseR : VGroup ty => (a, b : ty) -> | ||
a <+> b = neutral {ty} -> a = inverse b | ||
-- neutralProductInverseR a b prf = | ||
-- cancelRight b a (inverse b) $ | ||
-- trans prf $ sym $ groupInverseIsInverseR b | ||
|
||
||| ab = 0 -> a^-1 = b | ||
public export | ||
neutralProductInverseL : VGroup ty => (a, b : ty) -> | ||
a <+> b = neutral {ty} -> inverse a = b | ||
neutralProductInverseL a b prf = | ||
cancelLeft a (inverse a) b $ | ||
trans (groupInverseIsInverseL a) $ sym prf | ||
|
||
||| For any a and b, ax = b and ya = b have solutions. | ||
public export | ||
latinSquareProperty : VGroup ty => (a, b : ty) -> | ||
((x : ty ** a <+> x = b), | ||
(y : ty ** y <+> a = b)) | ||
-- latinSquareProperty a b = | ||
-- let a' = inverse a in | ||
-- (((a' <+> b) ** | ||
-- rewrite semigroupOpIsAssociative a a' b in | ||
-- rewrite groupInverseIsInverseL a in | ||
-- monoidNeutralIsNeutralR b), | ||
-- (b <+> a' ** | ||
-- rewrite sym $ semigroupOpIsAssociative b a' a in | ||
-- rewrite groupInverseIsInverseR a in | ||
-- monoidNeutralIsNeutralL b)) | ||
|
||
||| For any a, b, x, the solution to ax = b is unique. | ||
public export | ||
uniqueSolutionR : VGroup ty => (a, b, x, y : ty) -> | ||
a <+> x = b -> a <+> y = b -> x = y | ||
uniqueSolutionR a b x y p q = cancelLeft a x y $ trans p (sym q) | ||
|
||
||| For any a, b, y, the solution to ya = b is unique. | ||
public export | ||
uniqueSolutionL : VGroup t => (a, b, x, y : t) -> | ||
x <+> a = b -> y <+> a = b -> x = y | ||
uniqueSolutionL a b x y p q = cancelRight a x y $ trans p (sym q) | ||
|
||
||| -(x + y) = -x + -y | ||
public export | ||
inverseDistributesOverGroupOp : AbelianGroup ty => (l, r : ty) -> | ||
inverse (l <+> r) = inverse l <+> inverse r | ||
inverseDistributesOverGroupOp l r = | ||
rewrite groupOpIsCommutative (inverse l) (inverse r) in | ||
inverseOfSum l r | ||
|
||
||| Homomorphism preserves neutral. | ||
public export | ||
homoNeutral : GroupHomomorphism a b => | ||
to (neutral {ty=a}) = neutral {ty=b} | ||
-- homoNeutral {a} = | ||
-- let ae = neutral {ty=a} in | ||
-- selfSquareId (to ae) $ | ||
-- trans (sym $ toGroup ae ae) $ | ||
-- cong {f = to} $ monoidNeutralIsNeutralL ae | ||
|
||
||| Homomorphism preserves inverses. | ||
public export | ||
homoInverse : GroupHomomorphism a b => (x : a) -> | ||
the b (to $ inverse x) = the b (inverse $ to x) | ||
-- homoInverse {a} {b} x = | ||
-- cancelRight (to x) (to $ inverse x) (inverse $ to x) $ | ||
-- trans (sym $ toGroup (inverse x) x) $ | ||
-- trans (cong {f = to} $ groupInverseIsInverseR x) $ | ||
-- trans (homoNeutral {a=a} {b=b}) $ | ||
-- sym $ groupInverseIsInverseR (to x) | ||
|
||
-- Rings | ||
|
||
||| 0x = x | ||
public export | ||
multNeutralAbsorbingL : VRing ty => (r : ty) -> | ||
neutral {ty} <.> r = neutral {ty} | ||
-- multNeutralAbsorbingL {ty} r = | ||
-- let | ||
-- e = neutral {ty} | ||
-- ir = inverse r | ||
-- exr = e <.> r | ||
-- iexr = inverse exr | ||
-- in | ||
-- rewrite sym $ monoidNeutralIsNeutralR exr in | ||
-- rewrite sym $ groupInverseIsInverseR exr in | ||
-- rewrite sym $ semigroupOpIsAssociative iexr exr ((iexr <+> exr) <.> r) in | ||
-- rewrite groupInverseIsInverseR exr in | ||
-- rewrite sym $ ringOpIsDistributiveR e e r in | ||
-- rewrite monoidNeutralIsNeutralR e in | ||
-- groupInverseIsInverseR exr | ||
|
||
||| x0 = 0 | ||
public export | ||
multNeutralAbsorbingR : VRing ty => (l : ty) -> | ||
l <.> neutral {ty} = neutral {ty} | ||
-- multNeutralAbsorbingR {ty} l = | ||
-- let | ||
-- e = neutral {ty} | ||
-- il = inverse l | ||
-- lxe = l <.> e | ||
-- ilxe = inverse lxe | ||
-- in | ||
-- rewrite sym $ monoidNeutralIsNeutralL lxe in | ||
-- rewrite sym $ groupInverseIsInverseL lxe in | ||
-- rewrite semigroupOpIsAssociative (l <.> (lxe <+> ilxe)) lxe ilxe in | ||
-- rewrite groupInverseIsInverseL lxe in | ||
-- rewrite sym $ ringOpIsDistributiveL l e e in | ||
-- rewrite monoidNeutralIsNeutralL e in | ||
-- groupInverseIsInverseL lxe | ||
|
||
||| (-x)y = -(xy) | ||
public export | ||
multInverseInversesL : VRing ty => (l, r : ty) -> | ||
inverse l <.> r = inverse (l <.> r) | ||
-- multInverseInversesL l r = | ||
-- let | ||
-- il = inverse l | ||
-- lxr = l <.> r | ||
-- ilxr = il <.> r | ||
-- i_lxr = inverse lxr | ||
-- in | ||
-- rewrite sym $ monoidNeutralIsNeutralR ilxr in | ||
-- rewrite sym $ groupInverseIsInverseR lxr in | ||
-- rewrite sym $ semigroupOpIsAssociative i_lxr lxr ilxr in | ||
-- rewrite sym $ ringOpIsDistributiveR l il r in | ||
-- rewrite groupInverseIsInverseL l in | ||
-- rewrite multNeutralAbsorbingL r in | ||
-- monoidNeutralIsNeutralL i_lxr | ||
|
||
||| x(-y) = -(xy) | ||
public export | ||
multInverseInversesR : VRing ty => (l, r : ty) -> | ||
l <.> inverse r = inverse (l <.> r) | ||
-- multInverseInversesR l r = | ||
-- let | ||
-- ir = inverse r | ||
-- lxr = l <.> r | ||
-- lxir = l <.> ir | ||
-- ilxr = inverse lxr | ||
-- in | ||
-- rewrite sym $ monoidNeutralIsNeutralL lxir in | ||
-- rewrite sym $ groupInverseIsInverseL lxr in | ||
-- rewrite semigroupOpIsAssociative lxir lxr ilxr in | ||
-- rewrite sym $ ringOpIsDistributiveL l ir r in | ||
-- rewrite groupInverseIsInverseR r in | ||
-- rewrite multNeutralAbsorbingR l in | ||
-- monoidNeutralIsNeutralR ilxr | ||
|
||
||| (-x)(-y) = xy | ||
public export | ||
multNegativeByNegativeIsPositive : VRing ty => (l, r : ty) -> | ||
inverse l <.> inverse r = l <.> r | ||
-- multNegativeByNegativeIsPositive l r = | ||
-- rewrite multInverseInversesR (inverse l) r in | ||
-- rewrite sym $ multInverseInversesL (inverse l) r in | ||
-- rewrite inverseSquaredIsIdentity l in | ||
-- Refl | ||
|
||
||| (-1)x = -x | ||
public export | ||
inverseOfUnityR : VRingWithUnity ty => (x : ty) -> | ||
inverse (unity {ty}) <.> x = inverse x | ||
-- inverseOfUnityR {ty} x = | ||
-- rewrite multInverseInversesL (unity {ty}) x in | ||
-- rewrite ringWithUnityIsUnityR x in | ||
-- Refl | ||
|
||
||| x(-1) = -x | ||
public export | ||
inverseOfUnityL : VRingWithUnity ty => (x : ty) -> | ||
x <.> inverse (unity {ty}) = inverse x | ||
-- inverseOfUnityL {ty} x = | ||
-- rewrite multInverseInversesR x (unity {ty}) in | ||
-- rewrite ringWithUnityIsUnityL x in | ||
-- Refl |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters