-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathestimateTuning.m
230 lines (204 loc) · 8.12 KB
/
estimateTuning.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
function [shiftFB,centerA4,tuningSemitones,sideinfo] = estimateTuning(f_input,parameter,sideinfo)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Name: estimateTuning
% Date of Revision: 2011-03
% Programmer: Sebastian Ewert
%
% Description:
% - input is either a mono audio signal or a real valued spectrogram (magnitude or power)
% - if input is a spectrogram you have to set parameter.timeinfo and
% parameter.freqinfo (vectors defining the time and freq centers for each spectrogram bin)
% - if input is an audio signal, a sampling freq of 22050 Hz is assumed
% - guesses the tuning according to a simple energy maximizing criterion
% - output is either: what shiftFB is best to use (shiftFB \in [0:5]).
% Alternatively, the center freq for A4 is given which can be used to
% specify a filterbank on your own. The second option is more fine
% grained.
% Alternatively, it gives a tuning in semitones, which can
% easily be shifted cyclicly. For example: a tuning of -19/20 is more likely to be
% +1/20 Tuning difference.
% - parameter.numAdditionalTunings: how many tunings besides the fixed shiftFB ones
% to test. For example: If set to 3, than three additional tuning settings are
% tested for, located at 1/4, 2/4 and 3/4 semitones below the reference
% tuning. If set to 5, then at 1/6, 2/6,..., 5/6 semitones.
% - parameter.pitchRange specifies which pitches are considered for the
% tuning estimation.
% - parameter.pitchWeights: each pitch is considered according to a weight
% - Middle pitches are considered as being more important per default because
% here the frequency resolution is high enough. Additionally the piano has
% a consistent tuning only for middle pitches.
%
% Input:
% f_input
% parameter.numAdditionalTunings = 0;
% parameter.pitchRange = [21:108];
% parameter.pitchWeights = gausswin(length(parameter.pitchRange)).^2;
% parameter.fftWindowLength = 8192;
% parameter.windowFunction = @hanning;
% sideinfo
%
% Output:
% shiftFB
% centerA4
% tuningSemitones
% sideinfo
%
% License:
% This file is part of 'Chroma Toolbox'.
%
% 'Chroma Toolbox' is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 2 of the License, or
% (at your option) any later version.
%
% 'Chroma Toolbox' is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with 'Chroma Toolbox'. If not, see <http://www.gnu.org/licenses/>.
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Check parameters
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if nargin<2
parameter=[];
end
if nargin<1
error('Please specify input data');
end
if isfield(parameter,'numAdditionalTunings')==0
parameter.numAdditionalTunings = 0;
end
if isfield(parameter,'pitchRange')==0
% Which pitches to consider during the estimation
parameter.pitchRange = [21:108];
end
if isfield(parameter,'pitchWeights')==0
% assign a weight to each pitch specified in parameter.pitchRange to
% specify it's importance
parameter.pitchWeights = gausswin(length(parameter.pitchRange)).^2;
end
% the following parameters are only for audio signal input
if isfield(parameter,'fftWindowLength')==0
parameter.fftWindowLength = 8192;
end
if isfield(parameter,'windowFunction')==0
parameter.windowFunction = @hanning; % only tested with hanning.
end
if min(size(f_input)) == 1
inputIsAudioSignal = 1;
else
inputIsAudioSignal = 0;
end
if ~inputIsAudioSignal
if isfield(parameter,'freqinfo')==0
error('When using a spectrogram input you have to set parameter.freqinfo');
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Main program
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
numTunings = 6 + parameter.numAdditionalTunings;
referenceFreqsA4 = zeros(numTunings,1);
tunings = zeros(numTunings,1);
tunings(1) = 0;
tunings(2) = -1/4;
tunings(3) = -1/3;
tunings(4) = -1/2;
tunings(5) = -2/3;
tunings(6) = -3/4;
for k=1:parameter.numAdditionalTunings
tunings(k+6) = -k/(parameter.numAdditionalTunings+1);
end
referenceFreqsA4 = 2.^((69-69+tunings)/12) * 440;
if inputIsAudioSignal
[s,f,t] = spectrogram(f_input, parameter.windowFunction(parameter.fftWindowLength), parameter.fftWindowLength/2, parameter.fftWindowLength, 22050);
else
s = f_input;
f = parameter.freqinfo;
end
s = abs(s);
directFreqBinSearch = 0;
if all( (f(2:end)-f(1:end-1)) - (f(2)-f(1)) < eps )
directFreqBinSearch = 1;
end
averagedPowerSpectrogram = sum(s.^2,2);
totalPitchEnergyViaSpec = zeros(numTunings,1);
for tu=1:numTunings
centerfreqs = 2.^((parameter.pitchRange-69)/12) * referenceFreqsA4(tu);
upperborderfreqs = 2.^((parameter.pitchRange-68.5)/12) * referenceFreqsA4(tu);
lowerborderfreqs = 2.^((parameter.pitchRange-69.5)/12) * referenceFreqsA4(tu);
% build triangular filterbank for magnitude spectrogram
spectrogramFilter = zeros(length(f),1);
for k=1:length(parameter.pitchRange)
c = getCorrespondingBin(f,centerfreqs(k),directFreqBinSearch);
u = getCorrespondingBin(f,upperborderfreqs(k),directFreqBinSearch);
l = getCorrespondingBin(f,lowerborderfreqs(k),directFreqBinSearch);
% order is important here. If third parameter is < 2, then linspace
% returns the second parameter
spectrogramFilter(c:u) = parameter.pitchWeights(k) * linspace(1,0,u-c+1);
spectrogramFilter(l:c) = parameter.pitchWeights(k) * linspace(0,1,c-l+1);
end
totalPitchEnergyViaSpec(tu) = sum(spectrogramFilter.^2 .* averagedPowerSpectrogram);
end
[ignoreMe, maxIndex] = max(totalPitchEnergyViaSpec(1:6));
shiftFB = maxIndex-1;
[ignoreMe, maxIndex] = max(totalPitchEnergyViaSpec);
centerA4 = referenceFreqsA4(maxIndex);
tuningSemitones = tunings(maxIndex);
sideinfo.tuning.shiftFB = shiftFB;
sideinfo.tuning.centerA4 = centerA4;
sideinfo.tuning.tuningSemitones = tuningSemitones;
sideinfo.tuning.method = 'estimateTuningV1';
sideinfo.tuning.numAdditionalTunings = parameter.numAdditionalTunings;
sideinfo.tuning.pitchRange = parameter.pitchRange;
sideinfo.tuning.pitchWeights = parameter.pitchWeights;
sideinfo.tuning.fftWindowLength = parameter.fftWindowLength;
sideinfo.tuning.windowFunction = parameter.windowFunction;
sideinfo.tuning.inputWasAudioSignal = inputIsAudioSignal;
end
function index = getCorrespondingBin(x,sval,directSearch)
% - Finds the entry in x with the smallest absolute distance to sval.
% - x is assumed to be sorted (ascending)
% - 'directSearch' means that all values in x are equally spaced
% - x is assumed to be at least of length 2.
% - If directSearch==0 then we use binary seach to find the entry
%
% You can test the correctness of this procedure by comparing it against
% the result of: [ignoreMe index] = min(abs(x-sval))
%
% Author: Sebastian Ewert
if sval >= x(end)
index = length(x);
return;
elseif sval <= x(1)
index = 1;
return;
end
if directSearch
index = round( (sval-x(1)) / (x(2)-x(1))) + 1;
else
from=1;
to=length(x);
while from<=to
mid = round((from + to)/2);
diff = x(mid)-sval;
if diff<0 % x(mid) < sval
from=mid;
else % x(mid) => sval
to=mid;
end
if to-from==1
break;
end
end
if abs(x(from)-sval) < abs(x(to)-sval)
index = from;
else
index = to;
end
end
end