Skip to content

Keras style progressbar for pytorch (PK Bar)

License

Notifications You must be signed in to change notification settings

iridiumblue/pkbar

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

23 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

pkbar

Test PyPI version

Keras style progressbar for pytorch (PK Bar)

1. show

  • pkbar.Pbar (progress bar)
loading and processing dataset
10/10  [==============================] - 1.0s
  • pkbar.Kbar (keras bar)
Epoch: 1/3
100/100 [========] - 10s 102ms/step - loss: 3.7782 - rmse: 1.1650 - val_loss: 0.1823 - val_rmse: 0.4269
Epoch: 2/3
100/100 [========] - 10s 101ms/step - loss: 0.1819 - rmse: 0.4265 - val_loss: 0.1816 - val_rmse: 0.4261
Epoch: 3/3
100/100 [========] - 10s 101ms/step - loss: 0.1813 - rmse: 0.4258 - val_loss: 0.1810 - val_rmse: 0.4254

2. Install

pip install pkbar

3. Usage

  • pkbar.Pbar (progress bar)
import pkbar
import time

pbar = pkbar.Pbar(name='loading and processing dataset', target=10)

for i in range(10):
    time.sleep(0.1)
    pbar.update(i)
loading and processing dataset
10/10  [==============================] - 1.0s
import pkbar
import torch

# training loop
train_per_epoch = num_of_batches_per_epoch

for epoch in range(num_epochs):

    print('Epoch: %d/%d' % (epoch + 1, num_epochs))
    kbar = pkbar.Kbar(target=train_per_epoch, width=8)
    
    # training
    for i in range(train_per_epoch):
        outputs = model(inputs)
        train_loss = criterion(outputs, targets)
        train_rmse = torch.sqrt(train_loss)
        optimizer.zero_grad()
        train_loss.backward()
        optimizer.step()

        kbar.update(i, values=[("loss", train_loss), ("rmse", train_rmse)])

    # validation
    outputs = model(inputs)
    val_loss = criterion(outputs, targets)
    val_rmse = torch.sqrt(val_loss)

    kbar.add(1, values=[("loss", train_loss), ("rmse", train_rmse),
                        ("val_loss", val_loss), ("val_rmse", val_rmse)])
Epoch: 1/3
100/100 [========] - 10s 102ms/step - loss: 3.7782 - rmse: 1.1650 - val_loss: 0.1823 - val_rmse: 0.4269
Epoch: 2/3
100/100 [========] - 10s 101ms/step - loss: 0.1819 - rmse: 0.4265 - val_loss: 0.1816 - val_rmse: 0.4261
Epoch: 3/3
100/100 [========] - 10s 101ms/step - loss: 0.1813 - rmse: 0.4258 - val_loss: 0.1810 - val_rmse: 0.4254

4. Acknowledge

Keras progbar's code from tf.keras.utils.Progbar

About

Keras style progressbar for pytorch (PK Bar)

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 100.0%