This model just convert one-hot vector (shapes 1,10) in picture 28x28x1 px
- Input: shape = (1,10)
- Dense: 12544, activation='relu'
- BatchNormalization
- Reshape: (7, 7, 256)
- Conv2DTranspose: units=128 kernel=5 strides=(1, 1) padding='same' activation='relu'
- BatchNormalization
- Conv2DTranspose: units=64 kernel=5 strides=(2, 2) padding='same' activation='relu'
- BatchNormalization
- Conv2DTranspose: units=1 kernel=5 strides=(2, 2) padding='same' activation='sigmoid'
I take model from it
- Method 1:
import keras
model = keras.models.load_model('/path/')
model.compile(loss='mae', optimizer='adam', metrics=['acc'])
...
- Method 2
go to there and start for modules