-
Notifications
You must be signed in to change notification settings - Fork 0
jespb/Python-M6GP
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
This is an easy-to-use, scikit-learn inspired version of the M6GP algorithm. By using this file, you are agreeing to this product's EULA This product can be obtained at https://github.com/jespb/Python-M6GP Copyright ©2023-2025 J. E. Batista This file contains information about the command and flags used in the stand-alone version of this implementation and an explanation of how to import, use, and edit this implementation. This implementation of M6GP can be used in a stand-alone fashion using the following command and flags: $ python Main_M6GP_standalone.py [-d datasets] - This flag expects a set of csv dataset names separated by ";" (e.g., "a.csv;b.csv") - By default, the heart.csv dataset is used [-dsdir dir] - States the dataset directory. - By default "datasets/" is used - Use "-dsdir ./" for the root directory [-md max_depth] - This flag expects an integer with the maximum initial depth for the trees; - By default, this value is set to 6. [-mg max_generation] - This flag expects an integer with the maximum number of generations; - By default, this value is set to 100. [-odir dir] - States the output directory. - By default, "results/" is used - Use "-odir ./" for the root directory [-op operators] - This flag excepts a set of operators and their number of arguments, separated by ";" - Allowed operators: +,2 ; -,2 ; *,2 ; /,2 - By default, the used operators are the sum, subtraction, multiplication, and protected division: "+,2;-,2;*,2;/,2" [-ps population_size] - This flag expects an integer with the size of the population; - By default, this value is set to 500. [-runs number_of_runs] - This flag expects an integer with the number of runs to be made; - By default, this value is set to 30 [-tf train_fraction] - This flag expects a float [0;1] with the fraction of the dataset to be used in training; - By default, this value is set to 0.70 [-ts tournament_size] - This flag expects an integer with the tournament size; - By default, this value is set to 10. [-t number_of_threads] - This flag expects an integer with the number of threads to use while evaluating the population; - If the value is set to 1, the multiprocessing library will not be used - By default, this value is set to 1. [-di minimum_number_of_dimension] - This flag expects an integer with the minimum number of dimensions in each individual; - This flag affects the number of dimensions in the initial individuals; - By default, this value is set to 1 [-dm maximum_number_of_dimension] - This flag expects an integer with the maximum number of dimensions in each individual; - By default, this value is set to 9999 [-rs random state] - This flag expects an integer with the seed to be used by the M6GP algorithm; - By default, this value is set to 42 How to import this implementation to your project: - Download this repository; - Copy the "m6gp/" directory to your project directory; - import the M6GP class using "from m6gp.M6GP import M6GP". How to use this implementation: $ from m6gp.M6GP import M6GP $ model = M6GP() $ model.fit( training_x, training_y, test_x (optional), test_y (optional) ) Arguments for M6GP(): operators -> Operators used by the individual (default: [("+",2),("-",2),("*",2),("/",2)] ) max_depth -> Max initial depths of the individuals (default: 6) population_size -> Population size (default: 500) max_generation -> Maximum number of generations (default: 100) tournament_size -> Tournament size (default: 5) limit_depth -> Maximum individual depth (default: 17) threads -> Number of CPU threads to be used (default: 1) random_state -> Random state (default: 42) dim_min -> Minimum number of dimensions (default: 1) dim_max -> Maximum number of dimensions (default: 9999) #The algorithm will not reach this value Arguments for model.fit(): Tr_X -> Training samples Tr_Y -> Training labels Te_X -> Test samples, used in the standalone version (default: None) Te_Y -> Test labels, used in the standalone version (default: None) Useful methods: $ model = M6GP() -> starts the model; $ model.fit(X, Y) -> fits the model to the dataset; $ model.predict(X) -> Returns a list with the prediction of the given dataset. How to edit this implementation: Fitness Function ( m6gp.Individual ): - Change the getFitness() method to use your own fitness function; - This implementation assumes that a higher fitness is always better. To change this, edit the __gt__ method in this class; - Warning: Since M6GP is a slow method, a fitness function that escalates well with the number of features is recommended. Classification/regression algorithm ( m6gp.Individual ): - Change the createModel() method to use your own classifier; - Assuming it is a scykit-learn implementation, you may only need to change one line in this method; - Warning: Since M6GP is a slow method, a learning algorithm that escalates well with the number of features is recommended. Reference: @inproceedings{m6gp, doi = {10.1109/CEC60901.2024.10612107}, url = {https://ieeexplore.ieee.org/abstract/document/10612107}, year = {2024}, month = jun, publisher = {{IEEE}}, author = {Joao E. Batista and Nuno M. Rodrigues and Leonardo Vanneschi}, title = {{M6GP: Multiobjective Feature Engineering}}, booktitle = {2024 {IEEE} Congress on Evolutionary Computation ({CEC})} } You may also be interested in other works related to measuring the complexity of feature engineering models: - https://ieeexplore.ieee.org/abstract/document/10611989 - https://www.sciencedirect.com/science/article/pii/S2210650224002992
About
M6GP, a multi-objective feature engineering algorithm that aims to produce interpretable feature engineering models
Resources
Stars
Watchers
Forks
Packages 0
No packages published