Skip to content

Commit

Permalink
Update README.md
Browse files Browse the repository at this point in the history
  • Loading branch information
jphall663 authored May 20, 2023
1 parent 30e7bef commit 27b55ef
Showing 1 changed file with 20 additions and 10 deletions.
30 changes: 20 additions & 10 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -29,14 +29,9 @@ Corrections or suggestions? Please file a [GitHub issue](https://github.com/jpha
* [Assignment 1](assignments/tex/assignment_1.pdf):
* [Model evaluation notebook](https://nbviewer.jupyter.org/github/jphall663/GWU_rml/blob/master/assignments/eval.ipynb)
* [Full evaluations results]()
* Software Examples:
* [Building from Penalized GLM to Monotonic GBM (simple)](https://nbviewer.jupyter.org/github/jphall663/GWU_rml/blob/master/lecture_1.ipynb?flush_cache=true)
* [Building from Penalized GLM to Monotonic GBM](https://nbviewer.org/github/jphall663/interpretable_machine_learning_with_python/blob/master/glm_mgbm_gbm.ipynb?flush_cache=true)
* [Simple Explainable Boosting Machine Example](https://nbviewer.jupyter.org/github/jphall663/GWU_rml/blob/master/lecture_1_ebm_example.ipynb?flush_cache=true)
* [PiML Assignment 1 Example](https://github.com/jphall663/GWU_rml/blob/master/assignments/assignment_1/group6_PiML_example.ipynb) and simple [requirements.txt](https://github.com/jphall663/GWU_rml/blob/master/assignments/assignment_1/piml_requirements.txt)

* Reading: _Machine Learning for High-Risk Applications_, Chapter 2 (pp. 33 - 50) and Chapter 6 (pp. 189 - 217)

### Lecture 1 Suggested Software
### Lecture 1 Additional Software Tools

* Python [PiML-Toolbox](https://github.com/SelfExplainML/PiML-Toolbox)
* Python [explainable boosting machine (EBM)/GA2M](https://github.com/interpretml/interpret)
Expand All @@ -46,19 +41,34 @@ Corrections or suggestions? Please file a [GitHub issue](https://github.com/jpha
* R [`rpart`](https://cran.r-project.org/web/packages/rpart/index.html)
* Python [`skope-rules`](https://github.com/scikit-learn-contrib/skope-rules)

### Lecture 1 Suggested Reading
### Lecture 1 Additional Software Examples

* [Building from Penalized GLM to Monotonic GBM (simple)](https://nbviewer.jupyter.org/github/jphall663/GWU_rml/blob/master/lecture_1.ipynb?flush_cache=true)
* [Building from Penalized GLM to Monotonic GBM](https://nbviewer.org/github/jphall663/interpretable_machine_learning_with_python/blob/master/glm_mgbm_gbm.ipynb?flush_cache=true)
* [Simple Explainable Boosting Machine Example](https://nbviewer.jupyter.org/github/jphall663/GWU_rml/blob/master/lecture_1_ebm_example.ipynb?flush_cache=true)
* [PiML Assignment 1 Example](https://github.com/jphall663/GWU_rml/blob/master/assignments/assignment_1/group6_PiML_example.ipynb) and simple [requirements.txt](https://github.com/jphall663/GWU_rml/blob/master/assignments/assignment_1/piml_requirements.txt)

### Lecture 1 Additional Reading

* **Introduction and Background**:
* [*An Introduction to Machine Learning Interpretability*](https://h2o.ai/content/dam/h2o/en/marketing/documents/2019/08/An-Introduction-to-Machine-Learning-Interpretability-Second-Edition.pdf)
* [*Designing Inherently Interpretable Machine Learning Models*](https://arxiv.org/pdf/2111.01743.pdf)
* [*Psychological Foundations of Explainability and Interpretability in Artificial Intelligence*](https://nvlpubs.nist.gov/nistpubs/ir/2021/NIST.IR.8367.pdf)
* **[Responsible Artificial Intelligence](https://www.springer.com/gp/book/9783030303709)** - Sections 2.1-2.5, Chapter 7
* [*Stop Explaining Black Box Machine Learning Models for High Stakes Decisions and Use Interpretable Models Instead*](https://arxiv.org/pdf/1811.10154.pdf)

* **Self-explainaing Machine Learning Techniques**:
* **Interpretable Machine Learning** - [Chapter 5](https://christophm.github.io/interpretable-ml-book/simple.html)
* [*Accurate Intelligible Models with Pairwise Interactions*](http://www.cs.cornell.edu/~yinlou/papers/lou-kdd13.pdf)
* **Elements of Statistical Learning** - Chapters
* **Interpretable Machine Learning** - [Chapter 5](https://christophm.github.io/interpretable-ml-book/simple.html)
* [*This Looks Like That: Deep Learning for Interpretable Image Recognition*](https://arxiv.org/pdf/1806.10574.pdf)

FIGS: Fast Interpretable Greedy-Tree Sums (Tan, et al. 2022)
XGB1: Extreme Gradient Boosted Trees of Depth 1, with optimal binning (Chen and Guestrin, 2016; Navas-Palencia, 2020)
XGB2: Extreme Gradient Boosted Trees of Depth 2, with effect purification (Chen and Guestrin, 2016; Lengerich, et al. 2020)
EBM: Explainable Boosting Machine (Nori, et al. 2019; Lou, et al. 2013)
GAMI-Net: Generalized Additive Model with Structured Interactions (Yang, Zhang and Sudjianto, 2021)
ReLU-DNN: Deep ReLU Networks using Aletheia Unwrapper and Sparsification (Sudjianto, et al. 2020)

***

## Lecture 2: Post-hoc Explanation
Expand Down

0 comments on commit 27b55ef

Please sign in to comment.