Skip to content

Commit

Permalink
Merge branch 'master' of https://github.com/jphall663/GWU_rml
Browse files Browse the repository at this point in the history
  • Loading branch information
jphall663 committed Feb 10, 2025
2 parents 4657a63 + 38eb1d3 commit 73676e8
Showing 1 changed file with 3 additions and 42 deletions.
45 changes: 3 additions & 42 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -62,50 +62,11 @@ Corrections or suggestions? Please file a [GitHub issue](https://github.com/jpha
### Lecture 3 Class Materials

* [Lecture Notes](tex/lecture_3.pdf)
* [Software Example]()
* [Assignment 3](assignments/tex/assignment_3.pdf)
* [Model evaluation notebook](https://nbviewer.jupyter.org/github/jphall663/GWU_rml/blob/master/assignments/eval.ipynb?flush_cache=true)
* [Full evaluations results](assignments/model_eval_2023_06_28_21_00_17.csv)
* Reading: [_Machine Learning for High-Risk Applications_](https://pages.dataiku.com/oreilly-responsible-ai), Chapter 4 and Chapter 10

### Lecture 3 Additional Software Tools

* **Python**:
* [aequitas](https://github.com/dssg/aequitas)
* [AIF360](https://github.com/IBM/AIF360)
* [Algorithmic Fairness](https://oreil.ly/JNzqk)
* [fairlearn](https://oreil.ly/jYjCi)
* [fairml](https://oreil.ly/DCkZ5)
* [solas-ai-disparity](https://oreil.ly/X9fd6)
* [tensorflow/fairness-indicators](https://oreil.ly/dHBSL)
* [Themis](https://github.com/LASER-UMASS/Themis)

* **R**:
* [AIF360](https://oreil.ly/J53bZ)
* [fairmodels](https://oreil.ly/nSv8B)
* [fairness](https://oreil.ly/Dequ9)

### Lecture 3 Additional Software Examples
* [Increase Fairness in Your Machine Learning Project with Disparate Impact Analysis using Python and H2O](https://nbviewer.org/github/jphall663/interpretable_machine_learning_with_python/blob/master/dia.ipynb)
* [Testing a Constrained Model for Discrimination and Remediating Discovered Discrimination](https://nbviewer.jupyter.org/github/jphall663/GWU_rml/blob/master/lecture_3.ipynb)
* _Machine Learning for High-risk Applications_: [Use Cases](https://oreil.ly/machine-learning-high-risk-apps-code) (Chapter 10)

### Lecture 3 Additional Reading

* **Introduction and Background**:
* [*50 Years of Test (Un)fairness: Lessons for Machine Learning*](https://oreil.ly/fTlda)
* **Fairness and Machine Learning** - [Introduction](https://fairmlbook.org/introduction.html)
* [NIST SP1270: _Towards a Standard for Identifying and Managing Bias in Artificial Intelligence_](https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.1270.pdf)
* [*Fairness Through Awareness*](https://arxiv.org/pdf/1104.3913.pdf)

* **Discrimination Testing and Remediation Techniques**:
* [*An Empirical Comparison of Bias Reduction Methods on Real-World Problems in High-Stakes Policy Settings*](https://oreil.ly/vmxPz)
* [*Certifying and Removing Disparate Impact*](https://arxiv.org/pdf/1412.3756.pdf)
* [*Data Preprocessing Techniques for Classification Without
Discrimination*](https://link.springer.com/content/pdf/10.1007/s10115-011-0463-8.pdf)
* [*Decision Theory for Discrimination-aware Classification*](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.722.3030&rep=rep1&type=pdf)
* [*Fairness Beyond Disparate Treatment & Disparate Impact: Learning Classification Without Disparate Mistreatment*](https://arxiv.org/pdf/1610.08452.pdf)
* [*Learning Fair Representations*](http://proceedings.mlr.press/v28/zemel13.pdf)
* [*Mitigating Unwanted Biases with Adversarial Learning*](https://dl.acm.org/doi/pdf/10.1145/3278721.3278779)
* Reading [_Machine Learning for High-Risk Applications_](https://www.oreilly.com/library/view/machine-learning-for/9781098102425/), Chapter 4 and Chapter 10

***

Expand Down Expand Up @@ -181,7 +142,7 @@ Discrimination*](https://link.springer.com/content/pdf/10.1007/s10115-011-0463-8
* [Stress Testing](https://colab.research.google.com/drive/1S9pABlR7xs_VZAKraKT7pBSoXsuzZbaC?usp=sharing)
* [Residual Analysis](https://colab.research.google.com/drive/1e8CXl23qpYsUL4nbEjX0MCsjhbHEPBVR?usp=sharing)
* [Assignment 5](assignments/tex/assignment_5.pdf)
* Reading: [_Machine Learning for High-Risk Applications_](https://pages.dataiku.com/oreilly-responsible-ai), Chapter 3 and Chapter 8
* Reading: [_Machine Learning for High-Risk Applications_](https://www.oreilly.com/library/view/machine-learning-for/9781098102425/), Chapter 3 and Chapter 8
* [Lecture 5 Additional Materials](additional_materials/am5.md)

***
Expand Down

0 comments on commit 73676e8

Please sign in to comment.