Skip to content

Commit

Permalink
Update README.md
Browse files Browse the repository at this point in the history
  • Loading branch information
jphall663 authored May 29, 2023
1 parent e43a099 commit e4aacd0
Showing 1 changed file with 67 additions and 24 deletions.
91 changes: 67 additions & 24 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -33,13 +33,28 @@ Corrections or suggestions? Please file a [GitHub issue](https://github.com/jpha

### Lecture 1 Additional Software Tools

* Python [PiML-Toolbox](https://github.com/SelfExplainML/PiML-Toolbox)
* Python [explainable boosting machine (EBM)/GA2M](https://github.com/interpretml/interpret)
* R [`gam`](https://cran.r-project.org/web/packages/gam/index.html)
* `h2o` [penalized GLM](https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/glm.html) (R and Python)
* Monotonic gradient boosting machine (GBM): [`h2o`](https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/algo-params/monotone_constraints.html) and [`xgboost`](https://xgboost.readthedocs.io/en/latest/tutorials/monotonic.html) (R and Python)
* R [`rpart`](https://cran.r-project.org/web/packages/rpart/index.html)
* Python [`skope-rules`](https://github.com/scikit-learn-contrib/skope-rules)
* **Python**:
* [causalml](https://oreil.ly/XsiMk)
* [interpret](https://github.com/interpretml/interpret)
* [imodels](https://oreil.ly/coPjR)
* [PiML-Toolbox](https://github.com/SelfExplainML/PiML-Toolbox)
* [sklearn-expertsys](https://oreil.ly/igFz6)
* [skope-rules](https://github.com/scikit-learn-contrib/skope-rules)
* [tensorflow/lattice](https://oreil.ly/Z9iCS)

* **R**:
* [arules](https://oreil.ly/bBv9s)
* [elasticnet](https://oreil.ly/pBOBN)
* [gam](https://cran.r-project.org/web/packages/gam/index.html)
* [glmnet](https://oreil.ly/rMzEl)
* [quantreg](https://oreil.ly/qBWk9)
* [rpart](https://cran.r-project.org/web/packages/rpart/index.html)
* [RuleFit](https://oreil.ly/K-qc4)

* **Python, R or other**:
* [h2o-3](https://oreil.ly/PPUk5)
* [Rudin Group code](https://oreil.ly/QmRFF)
* [xgboost](https://github.com/dmlc/xgboost)

### Lecture 1 Additional Software Examples

Expand Down Expand Up @@ -77,35 +92,63 @@ Corrections or suggestions? Please file a [GitHub issue](https://github.com/jpha
### Lecture 2 Class Materials

* [Lecture Notes](tex/lecture_2.pdf)
* Software Examples:
* [Assignment 2](assignments/tex/assignment_2.pdf)
* Reading: [_Machine Learning for High-Risk Applications_](https://pages.dataiku.com/oreilly-responsible-ai), Chapter 2 (pp. 50 - 80) and Chapter 6 (pp. 208 - 230)

### Lecture 2 Additional Software Tools

* **Python**:
* [allennlp](https://github.com/allenai/allennlp)
* [alibi](https://github.com/SeldonIO/alibi)
* [anchor](https://oreil.ly/K3UuW)
* [DiCE](https://oreil.ly/-lwV4)
* [interpret](https://github.com/interpretml/interpret)
* [lime](https://oreil.ly/j5Cqj)
* [shap](https://github.com/slundberg/shap)
* [PiML-Toolbox](https://github.com/SelfExplainML/PiML-Toolbox)
* [tf-explain](https://github.com/sicara/tf-explain)

* **R**:
* [ALEPlot](https://oreil.ly/OSfUT)
* [DALEX](https://cran.r-project.org/web/packages/DALEX/index.html)
* [ICEbox](https://oreil.ly/6nl1W)
* [iml](https://cran.r-project.org/web/packages/iml/index.html)
* [Model Oriented](https://oreil.ly/7wUMp)
* [pdp](https://oreil.ly/PasMQ)
* [shapFlex](https://oreil.ly/RADtC)
* [vip](https://oreil.ly/YcD2_)

* **Python, R or other**:
* [h2o-3](https://oreil.ly/GtGvK)

### Lecture 2 Additional Software Examples:
* [Global and Local Explanations of a Constrained Model](https://nbviewer.jupyter.org/github/jphall663/GWU_rml/blob/master/lecture_2.ipynb)
* [Building from Penalized GLM to Monotonic GBM](https://nbviewer.org/github/jphall663/interpretable_machine_learning_with_python/blob/master/glm_mgbm_gbm.ipynb?flush_cache=true)
* [Monotonic XGBoost models, partial dependence, individual conditional expectation plots, and Shapley explanations](https://nbviewer.org/github/jphall663/interpretable_machine_learning_with_python/blob/master/xgboost_pdp_ice.ipynb)
* [Decision tree surrogates, LOCO, and ensembles of explanations](https://nbviewer.org/github/jphall663/interpretable_machine_learning_with_python/blob/master/dt_surrogate_loco.ipynb)
* [Assignment 2](https://raw.githubusercontent.com/jphall663/GWU_rml/master/assignments/tex/assignment_2.pdf)

### Lecture 2 Suggested Software

* Python:
* [`allennlp`](https://github.com/allenai/allennlp)
* [`alibi`](https://github.com/SeldonIO/alibi)
* [`interpret`](https://github.com/interpretml/interpret)
* [`shap`](https://github.com/slundberg/shap)
* [`PiML-Toolbox`](https://github.com/SelfExplainML/PiML-Toolbox)
* [`tf-explain`](https://github.com/sicara/tf-explain)
* R:
* [`DALEX`](https://cran.r-project.org/web/packages/DALEX/index.html)
* [`iml`](https://cran.r-project.org/web/packages/iml/index.html)

### Lecture 2 Suggested Reading
### Lecture 2 Additional Reading

* **Introduction and Background**:
* [*On the Art and Science of Explainable Machine Learning*](https://oreil.ly/myVr8)
* [*Proposed Guidelines for the Responsible Use of Explainable Machine Learning*](https://arxiv.org/pdf/1906.03533.pdf)
* [**Responsible Artificial Intelligence**](https://www.springer.com/gp/book/9783030303709) - Chapter 4

* **Post-hoc Explanation Techniques**:
* [_A Unified Approach to Interpreting Model Predictions_](https://papers.nips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf)
* [_Anchors: High-Precision Model-Agnostic Explanations_](https://homes.cs.washington.edu/~marcotcr/aaai18.pdf)
* **Elements of Statistical Learning** - [Section 10.13](https://hastie.su.domains/ElemStatLearn/printings/ESLII_print12_toc.pdf)
* [_Extracting Tree-Structured Representations of Trained Networks_](https://proceedings.neurips.cc/paper/1995/file/45f31d16b1058d586fc3be7207b58053-Paper.pdf)
* [_Interpretability via Model Extraction_](https://arxiv.org/pdf/1706.09773.pdf)
* **Interpretable Machine Learning** - [Chapter 6](https://christophm.github.io/interpretable-ml-book/agnostic.html) and [Chapter 7](https://christophm.github.io/interpretable-ml-book/example-based.html)
* [_Peeking Inside the Black Box: Visualizing Statistical Learning with Plots of Individual Conditional Expectation_](https://arxiv.org/pdf/1309.6392.pdf)
* [*Towards Better Understanding of Gradient-based Attribution Methods for Deep Neural Networks*](https://arxiv.org/pdf/1711.06104.pdf)
* [_Visualizing the Effects of Predictor Variables in Black Box Supervised Learning Models_](https://arxiv.org/pdf/1612.08468.pdf)
* [_“Why Should I Trust You?” Explaining the Predictions of Any Classifier_](https://www.kdd.org/kdd2016/papers/files/rfp0573-ribeiroA.pdf)

* **Problems with Psot-hoc Explanation**:
* [*General Pitfalls of Model-Agnostic Interpretation Methods*](link:https://oreil.ly/On9uS)
* [_Limitations of Interpretable Machine Learning Methods_](https://oreil.ly/VHMWh)
* [*When Not to Trust Your Explanations*](https://oreil.ly/9Oxa6)

***

Expand Down

0 comments on commit e4aacd0

Please sign in to comment.