- Random-Forest classifier for classifying backorder data
- The data is imbalance between 2 label
- Duplicating the Positive-label or Re-sampling the Negative-label to get more balance data-set
- Data set Backorder data
Dependencies:
- pandas: read / write csv file
- numpy: data format
- sklearn: classifiers
-
Training from csv data-file and writing model to model-file order_classifier.training_from_csv_data(data_file, model_file)
-
Loading model from model-file order_classifier.readModel(file_path)
-
Read from file and convert data to numpy format order_preprocess.read_data(file_path)
-
Predict order_classifier.predict(data, classifier)
-
Training sample order_classifier.build_classifier_sample()
-
Evaluating sample order_classifier.eval_result_rf()