Skip to content

Commit

Permalink
refactor: make PadicInt.valuation -valued
Browse files Browse the repository at this point in the history
It is currently `ℤ`-valued, but always nonnegative.

From FLT
  • Loading branch information
YaelDillies committed Dec 20, 2024
1 parent d70be40 commit 466f54e
Show file tree
Hide file tree
Showing 4 changed files with 113 additions and 131 deletions.
7 changes: 4 additions & 3 deletions Mathlib/NumberTheory/Padics/MahlerBasis.lean
Original file line number Diff line number Diff line change
Expand Up @@ -181,9 +181,10 @@ private lemma bojanic_mahler_step2 {f : C(ℤ_[p], E)} {s t : ℕ}
refine mul_le_mul_of_nonneg_right ?_ (by simp only [zero_le])
-- remains to show norm of binomial coeff is `≤ p⁻¹`
have : 0 < (p ^ t).choose (i + 1) := Nat.choose_pos (by omega)
rw [← zpow_neg_one, ← coe_le_coe, coe_nnnorm, Padic.norm_eq_pow_val (mod_cast this.ne'),
coe_zpow, NNReal.coe_natCast, (zpow_right_strictMono₀ (mod_cast hp.out.one_lt)).le_iff_le,
neg_le_neg_iff, Padic.valuation_natCast, Nat.one_le_cast]
rw [← zpow_neg_one, ← coe_le_coe, coe_nnnorm, Padic.norm_eq_zpow_neg_valuation
(mod_cast this.ne'), coe_zpow, NNReal.coe_natCast,
zpow_le_zpow_iff_right₀ (mod_cast hp.out.one_lt), neg_le_neg_iff, Padic.valuation_natCast,
Nat.one_le_cast]
exact one_le_padicValNat_of_dvd this <| hp.out.dvd_choose_pow (by omega) (by omega)
· -- Bounding the sum over `range (n + 1)`: every term is small by the choice of `t`
refine norm_sum_le_of_forall_le_of_nonempty nonempty_range_succ (fun i _ ↦ ?_)
Expand Down
150 changes: 54 additions & 96 deletions Mathlib/NumberTheory/Padics/PadicIntegers.lean
Original file line number Diff line number Diff line change
Expand Up @@ -50,20 +50,19 @@ open Padic Metric IsLocalRing

noncomputable section

variable (p : ℕ) [hp : Fact p.Prime]

/-- The `p`-adic integers `ℤ_[p]` are the `p`-adic numbers with norm `≤ 1`. -/
def PadicInt (p : ℕ) [Fact p.Prime] :=
{ x : ℚ_[p] // ‖x‖ ≤ 1 }
def PadicInt : Type := {x : ℚ_[p] // ‖x‖ ≤ 1}

/-- The ring of `p`-adic integers. -/
notation "ℤ_[" p "]" => PadicInt p

namespace PadicInt
variable {p} {x y : ℤ_[p]}

/-! ### Ring structure and coercion to `ℚ_[p]` -/


variable {p : ℕ} [Fact p.Prime]

instance : Coe ℤ_[p] ℚ_[p] :=
⟨Subtype.val⟩

Expand Down Expand Up @@ -127,9 +126,9 @@ theorem coe_one : ((1 : ℤ_[p]) : ℚ_[p]) = 1 := rfl
@[simp, norm_cast]
theorem coe_zero : ((0 : ℤ_[p]) : ℚ_[p]) = 0 := rfl

theorem coe_eq_zero (z : ℤ_[p]) : (z : ℚ_[p]) = 0z = 0 := by rw [← coe_zero, Subtype.coe_inj]
@[simp] lemma coe_eq_zero : (x : ℚ_[p]) = 0x = 0 := by rw [← coe_zero, Subtype.coe_inj]

theorem coe_ne_zero (z : ℤ_[p]) : (z : ℚ_[p]) ≠ 0z0 := z.coe_eq_zero.not
lemma coe_ne_zero : (x : ℚ_[p]) ≠ 0x0 := coe_eq_zero.not

instance : AddCommGroup ℤ_[p] := (by infer_instance : AddCommGroup (subring p))

Expand Down Expand Up @@ -178,10 +177,6 @@ def ofIntSeq (seq : ℕ → ℤ) (h : IsCauSeq (padicNorm p) fun n => seq n) :
split_ifs with hne <;> norm_cast
apply padicNorm.of_int⟩

end PadicInt

namespace PadicInt

/-! ### Instances
We now show that `ℤ_[p]` is a
Expand All @@ -190,8 +185,7 @@ We now show that `ℤ_[p]` is a
* integral domain
-/


variable (p : ℕ) [Fact p.Prime]
variable (p)

instance : MetricSpace ℤ_[p] := Subtype.metricSpace

Expand Down Expand Up @@ -228,15 +222,8 @@ variable {p}

instance : IsDomain ℤ_[p] := Function.Injective.isDomain (subring p).subtype Subtype.coe_injective

end PadicInt

namespace PadicInt

/-! ### Norm -/


variable {p : ℕ} [Fact p.Prime]

theorem norm_le_one (z : ℤ_[p]) : ‖z‖ ≤ 1 := z.2

@[simp]
Expand Down Expand Up @@ -291,12 +278,6 @@ instance complete : CauSeq.IsComplete ℤ_[p] norm :=
⟨⟨_, hqn⟩, fun ε => by
simpa [norm, norm_def] using CauSeq.equiv_lim (cauSeq_to_rat_cauSeq f) ε⟩⟩

end PadicInt

namespace PadicInt

variable (p : ℕ) [hp : Fact p.Prime]

theorem exists_pow_neg_lt {ε : ℝ} (hε : 0 < ε) : ∃ k : ℕ, (p : ℝ) ^ (-(k : ℤ)) < ε := by
obtain ⟨k, hk⟩ := exists_nat_gt ε⁻¹
use k
Expand Down Expand Up @@ -329,50 +310,45 @@ theorem norm_int_le_pow_iff_dvd {k : ℤ} {n : ℕ} :

/-! ### Valuation on `ℤ_[p]` -/

lemma valuation_coe_nonneg : 0 ≤ (x : ℚ_[p]).valuation := by
obtain rfl | hx := eq_or_ne x 0
· simp
have := x.2
rwa [Padic.norm_eq_zpow_neg_valuation <| coe_ne_zero.2 hx, zpow_le_one_iff_right₀, neg_nonpos]
at this
exact mod_cast hp.out.one_lt

/-- `PadicInt.valuation` lifts the `p`-adic valuation on `ℚ` to `ℤ_[p]`. -/
def valuation (x : ℤ_[p]) :=
Padic.valuation (x : ℚ_[p])
def valuation (x : ℤ_[p]) : ℕ := (x : ℚ_[p]).valuation.toNat

theorem norm_eq_pow_val {x : ℤ_[p]} (hx : x ≠ 0) : ‖x‖ = (p : ℝ) ^ (-x.valuation) := by
refine @Padic.norm_eq_pow_val p hp x ?_
contrapose! hx
exact Subtype.val_injective hx
@[simp, norm_cast] lemma valuation_coe (x : ℤ_[p]) : (x : ℚ_[p]).valuation = x.valuation := by
simp [valuation, valuation_coe_nonneg]

@[simp]
theorem valuation_zero : valuation (0 : ℤ_[p]) = 0 := Padic.valuation_zero
@[simp] lemma valuation_zero : valuation (0 : ℤ_[p]) = 0 := by simp [valuation]
@[simp] lemma valuation_one : valuation (1 : ℤ_[p]) = 0 := by simp [valuation]
@[simp] lemma valuation_p : valuation (p : ℤ_[p]) = 1 := by simp [valuation]

@[simp]
theorem valuation_one : valuation (1 : ℤ_[p]) = 0 := Padic.valuation_one
lemma le_valuation_add (hxy : x + y ≠ 0) : min x.valuation y.valuation ≤ (x + y).valuation := by
zify; simpa [← valuation_coe] using Padic.le_valuation_add <| coe_ne_zero.2 hxy

@[simp] lemma valuation_mul (hx : x ≠ 0) (hy : y ≠ 0) :
(x * y).valuation = x.valuation + y.valuation := by
zify; simp [← valuation_coe, Padic.valuation_mul (coe_ne_zero.2 hx) (coe_ne_zero.2 hy)]

@[simp]
theorem valuation_p : valuation (p : ℤ_[p]) = 1 := by simp [valuation]
lemma valuation_pow (x : ℤ_[p]) (n : ℕ) : (x ^ n).valuation = n * x.valuation := by
zify; simp [← valuation_coe]

theorem valuation_nonneg (x : ℤ_[p]) : 0 ≤ x.valuation := by
by_cases hx : x = 0
· simp [hx]
have h : (1 : ℝ) < p := mod_cast hp.1.one_lt
rw [← neg_nonpos, ← (zpow_right_strictMono₀ h).le_iff_le]
show (p : ℝ) ^ (-valuation x) ≤ (p : ℝ) ^ (0 : ℤ)
rw [← norm_eq_pow_val hx]
simpa using x.property
lemma norm_eq_zpow_neg_valuation {x : ℤ_[p]} (hx : x ≠ 0) : ‖x‖ = p ^ (-x.valuation : ℤ) := by
simp [norm_def, Padic.norm_eq_zpow_neg_valuation <| coe_ne_zero.2 hx]

@[deprecated (since := "2024-12-10")] alias norm_eq_pow_val := norm_eq_zpow_neg_valuation

-- TODO: Do we really need this lemma?
@[simp]
theorem valuation_p_pow_mul (n : ℕ) (c : ℤ_[p]) (hc : c ≠ 0) :
((p : ℤ_[p]) ^ n * c).valuation = n + c.valuation := by
have : ‖(p : ℤ_[p]) ^ n * c‖ = ‖(p : ℤ_[p]) ^ n‖ * ‖c‖ := norm_mul _ _
have aux : (p : ℤ_[p]) ^ n * c ≠ 0 := by
contrapose! hc
rw [mul_eq_zero] at hc
cases' hc with hc hc
· refine (hp.1.ne_zero ?_).elim
exact_mod_cast pow_eq_zero hc
· exact hc
rwa [norm_eq_pow_val aux, norm_p_pow, norm_eq_pow_val hc, ← zpow_add₀, ← neg_add,
zpow_right_inj₀, neg_inj] at this
· exact mod_cast hp.1.pos
· exact mod_cast hp.1.ne_one
· exact mod_cast hp.1.ne_zero
rw [valuation_mul (NeZero.ne _) hc, valuation_pow, valuation_p, mul_one]

section Units

Expand Down Expand Up @@ -429,25 +405,22 @@ theorem norm_units (u : ℤ_[p]ˣ) : ‖(u : ℤ_[p])‖ = 1 := isUnit_iff.mp <|
/-- `unitCoeff hx` is the unit `u` in the unique representation `x = u * p ^ n`.
See `unitCoeff_spec`. -/
def unitCoeff {x : ℤ_[p]} (hx : x ≠ 0) : ℤ_[p]ˣ :=
let u : ℚ_[p] := x * (p : ℚ_[p]) ^ (-x.valuation)
let u : ℚ_[p] := x * (p : ℚ_[p]) ^ (-x.valuation : ℤ)
have hu : ‖u‖ = 1 := by
simp [u, hx, zpow_ne_zero (G₀ := ℝ) _ (Nat.cast_ne_zero.2 hp.1.pos.ne'), norm_eq_pow_val]
simp [u, hx, pow_ne_zero _ (NeZero.ne _), norm_eq_zpow_neg_valuation]
mkUnits hu

@[simp]
theorem unitCoeff_coe {x : ℤ_[p]} (hx : x ≠ 0) :
(unitCoeff hx : ℚ_[p]) = x * (p : ℚ_[p]) ^ (-x.valuation) := rfl
(unitCoeff hx : ℚ_[p]) = x * (p : ℚ_[p]) ^ (-x.valuation : ℤ) := rfl

theorem unitCoeff_spec {x : ℤ_[p]} (hx : x ≠ 0) :
x = (unitCoeff hx : ℤ_[p]) * (p : ℤ_[p]) ^ Int.natAbs (valuation x) := by
x = (unitCoeff hx : ℤ_[p]) * (p : ℤ_[p]) ^ x.valuation := by
apply Subtype.coe_injective
push_cast
have repr : (x : ℚ_[p]) = unitCoeff hx * (p : ℚ_[p]) ^ x.valuation := by
rw [unitCoeff_coe, mul_assoc, ← zpow_add₀]
· simp
· exact mod_cast hp.1.ne_zero
convert repr using 2
rw [← zpow_natCast, Int.natAbs_of_nonneg (valuation_nonneg x)]
rw [unitCoeff_coe, mul_assoc, ← zpow_natCast, ← zpow_add₀]
· simp
· exact NeZero.ne _

end Units

Expand All @@ -457,35 +430,22 @@ section NormLeIff


theorem norm_le_pow_iff_le_valuation (x : ℤ_[p]) (hx : x ≠ 0) (n : ℕ) :
‖x‖ ≤ (p : ℝ) ^ (-n : ℤ) ↔ ↑n ≤ x.valuation := by
rw [norm_eq_pow_val hx]
lift x.valuation to ℕ using x.valuation_nonneg with k
simp only [Int.ofNat_le, zpow_neg, zpow_natCast]
have aux : ∀ m : ℕ, 0 < (p : ℝ) ^ m := by
intro m
refine pow_pos ?_ m
exact mod_cast hp.1.pos
rw [inv_le_inv₀ (aux _) (aux _)]
have : p ^ n ≤ p ^ k ↔ n ≤ k := (pow_right_strictMono₀ hp.1.one_lt).le_iff_le
rw [← this]
norm_cast
‖x‖ ≤ (p : ℝ) ^ (-n : ℤ) ↔ n ≤ x.valuation := by
rw [norm_eq_zpow_neg_valuation hx, zpow_le_zpow_iff_right₀, neg_le_neg_iff, Nat.cast_le]
exact mod_cast hp.out.one_lt

theorem mem_span_pow_iff_le_valuation (x : ℤ_[p]) (hx : x ≠ 0) (n : ℕ) :
x ∈ (Ideal.span {(p : ℤ_[p]) ^ n} : Ideal ℤ_[p]) ↔ n ≤ x.valuation := by
x ∈ (Ideal.span {(p : ℤ_[p]) ^ n} : Ideal ℤ_[p]) ↔ n ≤ x.valuation := by
rw [Ideal.mem_span_singleton]
constructor
· rintro ⟨c, rfl⟩
suffices c ≠ 0 by
rw [valuation_p_pow_mul _ _ this, le_add_iff_nonneg_right]
apply valuation_nonneg
rw [valuation_p_pow_mul _ _ this]
exact le_self_add
contrapose! hx
rw [hx, mul_zero]
· nth_rewrite 2 [unitCoeff_spec hx]
lift x.valuation to ℕ using x.valuation_nonneg with k
simp only [Int.natAbs_ofNat, Units.isUnit, IsUnit.dvd_mul_left, Int.ofNat_le]
intro H
obtain ⟨k, rfl⟩ := Nat.exists_eq_add_of_le H
simp only [pow_add, dvd_mul_right]
simpa [Units.isUnit, IsUnit.dvd_mul_left] using pow_dvd_pow _

theorem norm_le_pow_iff_mem_span_pow (x : ℤ_[p]) (n : ℕ) :
‖x‖ ≤ (p : ℝ) ^ (-n : ℤ) ↔ x ∈ (Ideal.span {(p : ℤ_[p]) ^ n} : Ideal ℤ_[p]) := by
Expand Down Expand Up @@ -525,7 +485,7 @@ instance : IsLocalRing ℤ_[p] :=
IsLocalRing.of_nonunits_add <| by simp only [mem_nonunits]; exact fun x y => norm_lt_one_add

theorem p_nonnunit : (p : ℤ_[p]) ∈ nonunits ℤ_[p] := by
have : (p : ℝ)⁻¹ < 1 := inv_lt_one_of_one_lt₀ <| mod_cast hp.1.one_lt
have : (p : ℝ)⁻¹ < 1 := inv_lt_one_of_one_lt₀ <| mod_cast hp.out.one_lt
rwa [← norm_p, ← mem_nonunits] at this

theorem maximalIdeal_eq_span_p : maximalIdeal ℤ_[p] = Ideal.span {(p : ℤ_[p])} := by
Expand All @@ -539,14 +499,14 @@ theorem maximalIdeal_eq_span_p : maximalIdeal ℤ_[p] = Ideal.span {(p : ℤ_[p]
theorem prime_p : Prime (p : ℤ_[p]) := by
rw [← Ideal.span_singleton_prime, ← maximalIdeal_eq_span_p]
· infer_instance
· exact mod_cast hp.1.ne_zero
· exact NeZero.ne _

theorem irreducible_p : Irreducible (p : ℤ_[p]) := Prime.irreducible prime_p

instance : IsDiscreteValuationRing ℤ_[p] :=
IsDiscreteValuationRing.ofHasUnitMulPowIrreducibleFactorization
⟨p, irreducible_p, fun {x hx} =>
⟨x.valuation.natAbs, unitCoeff hx, by rw [mul_comm, ← unitCoeff_spec hx]⟩⟩
⟨x.valuation, unitCoeff hx, by rw [mul_comm, ← unitCoeff_spec hx]⟩⟩

theorem ideal_eq_span_pow_p {s : Ideal ℤ_[p]} (hs : s ≠ ⊥) :
∃ n : ℕ, s = Ideal.span {(p : ℤ_[p]) ^ n} :=
Expand All @@ -565,9 +525,7 @@ instance : IsAdicComplete (maximalIdeal ℤ_[p]) ℤ_[p] where
rw [← neg_sub, norm_neg]
exact hx hn
· refine ⟨x'.lim, fun n => ?_⟩
have : (0 : ℝ) < (p : ℝ) ^ (-n : ℤ) := by
apply zpow_pos
exact mod_cast hp.1.pos
have : (0 : ℝ) < (p : ℝ) ^ (-n : ℤ) := zpow_pos (mod_cast hp.out.pos) _
obtain ⟨i, hi⟩ := equiv_def₃ (equiv_lim x') this
by_cases hin : i ≤ n
· exact (hi i le_rfl n hin).le
Expand Down Expand Up @@ -609,8 +567,8 @@ instance isFractionRing : IsFractionRing ℤ_[p] ℚ_[p] where
intro h0
rw [h0, norm_zero] at hx
exact hx zero_le_one
rw [ha, padicNormE.mul, padicNormE.norm_p_pow, Padic.norm_eq_pow_val hx, ← zpow_add',
hn_coe, neg_neg, neg_add_cancel, zpow_zero]
rw [ha, padicNormE.mul, padicNormE.norm_p_pow, Padic.norm_eq_zpow_neg_valuation hx,
← zpow_add', hn_coe, neg_neg, neg_add_cancel, zpow_zero]
exact Or.inl (Nat.cast_ne_zero.mpr (NeZero.ne p))
use
(⟨a, le_of_eq ha_norm⟩,
Expand Down
Loading

0 comments on commit 466f54e

Please sign in to comment.