Skip to content

Little Python script to show where IP addresses are coming from by plotting them on a World map

License

Notifications You must be signed in to change notification settings

lgg-awesome/PyGeoIpMap

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

45 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PyGeoIpMap

A Python script to show where IP addresses are coming from by plotting them on a World map. Now compatible with Python3.

screenshot.jpg

Requirements

PyGeoIpMap can be installed along with its dependencies easily on Fedora Linux with the following command:

sudo dnf install python3-numpy python3-matplotlib python3-basemap python3-pygeoip

Usage

usage: pygeoipmap.py [-h] [-i INPUT] [-o OUTPUT] [-f {ip,csv}] [-s {f,m}]
                     [-db DB] [--extents EXTENTS]

Visualize community on a map.

optional arguments:
  -h, --help            show this help message and exit
  -i INPUT, --input INPUT
                        Input file. One IP per line or, if FORMAT set to
                        'csv', CSV formatted file ending with latitude and
                        longitude positions
  -o OUTPUT, --output OUTPUT
                        Path to save the file (e.g. /tmp/output.png)
  -f {ip,csv}, --format {ip,csv}
                        Format of the input file.
  -s {f,m}, --service {f,m}
                        Geolocation service (f=FreeGeoIP, m=MaxMind local
                        database)
  -db DB, --db DB       Full path to MaxMind database file (default =
                        ./GeoLiteCity.dat)
  --extents W/E/S/N     Spatial extents for the figure
                        (west/east/south/north). Defaults to global.

Examples

Using a list of IP addresses (and the FreeGeoIp web service)

A World map can be generated from a list of IP addresses by running the following command:

python3 pygeoipmap.py -i /tmp/ip.txt

The list of IP address must be saved to a text file with each IP address separated by a newline as shown below:

218.60.148.32
59.63.175.24
109.207.56.22
59.63.175.25
59.39.71.222
222.186.62.17
72.80.16.100
60.199.196.144
…

In that example above, the program will use data available from FreeGeoIp to find the location of each IP address and generate a World map called output.png.

Using a MaxMind offline database (Recommended)

Local MaxMind database files can be used with the MaxMind GeoIP library with the --service option:

python3 pygeoipmap.py -i /tmp/ip.txt --service m --db /path/to/GeoLiteCity.dat

You can download and unzip a copy of the latest MaxMind database as follows:

wget http://geolite.maxmind.com/download/geoip/database/GeoLiteCity.dat.xz && xz -d GeoLiteCity.dat.xz

Specifying a region for the plot

python3 pygeoipmap.py -i /tmp/ip.txt --extents=-12/45/30/65 --output=ip.png

This limits the plot to Europe.

Using a CSV file already containing latitude and longitude data

PyGeoIpMap can generate a World map without connecting to FreeGeoIp if the latitude and longitude data are available. A CSV file where the two last columns are the IP address' corresponding latitude and longitude values.

An example of a CSV file with each IP address' latitude and longitude values provided:

198.23.67.201, Dallas, United States, 32.9299, -96.8353
223.4.240.25, Hangzhou, China, 30.2936, 120.1614
74.208.213.28, Wayne, United States, 40.0548, -75.4083
119.80.39.54, Beijing, China, 39.9289, 116.3883
101.44.1.135, Shanghai, China, 31.0456, 121.3997
219.144.17.74, Xian, China, 34.2583, 108.9286
64.27.26.7, Los Angeles, United States, 34.053, -118.2642

The World map can be generated from the CSV file by running the following command:

python3 pygeoipmap.py -o /tmp/evil_hackers.jpg -f csv data.csv

PyGeoIpMap will output the World map /tmp/evil_hackers.jpg as seen below.

screenshot.jpg

About

Little Python script to show where IP addresses are coming from by plotting them on a World map

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%