Skip to content

[Tosa] : Equalize ranks for all operands for tosa.select + Slice conv inputs for dynamic batch as long as spatial dims are static. #4162

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 2 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
21 changes: 13 additions & 8 deletions lib/Conversion/TorchToTosa/TorchToTosa.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -2453,9 +2453,13 @@ LogicalResult ConvertAtenOp<AtenConvolutionOp>::matchAndRewrite(
}

int64_t outputHDim, outputWDim;
if (inputTy.hasStaticShape()) {
int64_t inputHDim = inputShape[2];
int64_t inputWDim = inputShape[3];
int64_t inputHDim = inputShape[2];
int64_t inputWDim = inputShape[3];

bool isStaticSpatialDims =
!ShapedType::isDynamic(inputHDim) && !ShapedType::isDynamic(inputWDim);
if (isStaticSpatialDims) {

int64_t weightHDim = weightShape[2];
int64_t weightWDim = weightShape[3];

Expand All @@ -2473,8 +2477,8 @@ LogicalResult ConvertAtenOp<AtenConvolutionOp>::matchAndRewrite(
SmallVector<int64_t> sizeHSlice(transposedInputShape);
// TOSA uses NHWC, so we will slice dim 1 for Height value
sizeHSlice[1] = inputHDim - (remainderHDim - padding[1]);
transposedInput = rewriter.create<tosa::SliceOp>(
op->getLoc(), RankedTensorType::get(sizeHSlice, inputElemTy),
transposedInput = tosa::CreateOpAndInfer<tosa::SliceOp>(
rewriter, op->getLoc(), UnrankedTensorType::get(inputElemTy),
transposedInput,
tosa::getTosaConstShape(rewriter, op->getLoc(), startHSlice),
tosa::getTosaConstShape(rewriter, op->getLoc(), sizeHSlice));
Expand All @@ -2498,8 +2502,8 @@ LogicalResult ConvertAtenOp<AtenConvolutionOp>::matchAndRewrite(
dyn_cast<RankedTensorType>(transposedInput.getType()).getShape());
// TOSA uses NHWC, so we will slice dim 2 for Width value
sizeWSlice[2] = inputWDim - (remainderWDim - padding[3]);
transposedInput = rewriter.create<tosa::SliceOp>(
op->getLoc(), RankedTensorType::get(sizeWSlice, inputElemTy),
transposedInput = tosa::CreateOpAndInfer<tosa::SliceOp>(
rewriter, op->getLoc(), UnrankedTensorType::get(inputElemTy),
transposedInput,
tosa::getTosaConstShape(rewriter, op->getLoc(), startWSlice),
tosa::getTosaConstShape(rewriter, op->getLoc(), sizeWSlice));
Expand Down Expand Up @@ -5069,7 +5073,8 @@ LogicalResult ConvertAtenOp<AtenWhereSelfOp>::matchAndRewrite(
dyn_cast<TensorType>(getTypeConverter()->convertType(op.getType()));

if (mlir::tosa::EqualizeRanks(rewriter, op->getLoc(), cond, self).failed() ||
mlir::tosa::EqualizeRanks(rewriter, op->getLoc(), cond, other).failed())
mlir::tosa::EqualizeRanks(rewriter, op->getLoc(), cond, other).failed() ||
mlir::tosa::EqualizeRanks(rewriter, op->getLoc(), self, other).failed())
return rewriter.notifyMatchFailure(
op, "Failed to equalize ranks among operands and result");

Expand Down
107 changes: 107 additions & 0 deletions test/Conversion/TorchToTosa/basic.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -1421,6 +1421,28 @@ func.func @torch.aten.where.self(%arg0: !torch.vtensor<[1,1,5,5],i1>, %arg1: !to
return %0 : !torch.vtensor<[1,12,5,5],f32>
}

// -----
// CHECK-LABEL: func.func @torch.aten.where.self_differing_rank_inputs(
// CHECK-SAME: %[[VAL_0:.*]]: !torch.vtensor<[5,4],i1>,
// CHECK-SAME: %[[VAL_1:.*]]: !torch.vtensor<[],f32>,
// CHECK-SAME: %[[VAL_2:.*]]: !torch.vtensor<[1,3,1,1,5,4],f32>) -> !torch.vtensor<[1,3,1,1,5,4],f32> {
// CHECK: %[[VAL_3:.*]] = torch_c.to_builtin_tensor %[[VAL_2]] : !torch.vtensor<[1,3,1,1,5,4],f32> -> tensor<1x3x1x1x5x4xf32>
// CHECK: %[[VAL_4:.*]] = torch_c.to_builtin_tensor %[[VAL_1]] : !torch.vtensor<[],f32> -> tensor<f32>
// CHECK: %[[VAL_5:.*]] = torch_c.to_builtin_tensor %[[VAL_0]] : !torch.vtensor<[5,4],i1> -> tensor<5x4xi1>
// CHECK: %[[VAL_6:.*]] = tosa.const_shape {values = dense<1> : tensor<2xindex>} : () -> !tosa.shape<2>
// CHECK: %[[VAL_7:.*]] = tosa.reshape %[[VAL_4]], %[[VAL_6]] : (tensor<f32>, !tosa.shape<2>) -> tensor<1x1xf32>
// CHECK: %[[VAL_8:.*]] = tosa.const_shape {values = dense<[1, 1, 1, 1, 5, 4]> : tensor<6xindex>} : () -> !tosa.shape<6>
// CHECK: %[[VAL_9:.*]] = tosa.reshape %[[VAL_5]], %[[VAL_8]] : (tensor<5x4xi1>, !tosa.shape<6>) -> tensor<1x1x1x1x5x4xi1>
// CHECK: %[[VAL_10:.*]] = tosa.const_shape {values = dense<1> : tensor<6xindex>} : () -> !tosa.shape<6>
// CHECK: %[[VAL_11:.*]] = tosa.reshape %[[VAL_7]], %[[VAL_10]] : (tensor<1x1xf32>, !tosa.shape<6>) -> tensor<1x1x1x1x1x1xf32>
// CHECK: %[[VAL_12:.*]] = tosa.select %[[VAL_9]], %[[VAL_11]], %[[VAL_3]] : (tensor<1x1x1x1x5x4xi1>, tensor<1x1x1x1x1x1xf32>, tensor<1x3x1x1x5x4xf32>) -> tensor<1x3x1x1x5x4xf32>
// CHECK: %[[VAL_13:.*]] = torch_c.from_builtin_tensor %[[VAL_12]] : tensor<1x3x1x1x5x4xf32> -> !torch.vtensor<[1,3,1,1,5,4],f32>
// CHECK: return %[[VAL_13]]
func.func @torch.aten.where.self_differing_rank_inputs(%40: !torch.vtensor<[5,4],i1>, %41: !torch.vtensor<[],f32>, %38 : !torch.vtensor<[1,3,1,1,5,4],f32>) -> (!torch.vtensor<[1,3,1,1,5,4],f32>) {
%42 = torch.aten.where.self %40, %41, %38 : !torch.vtensor<[5,4],i1>, !torch.vtensor<[],f32>, !torch.vtensor<[1,3,1,1,5,4],f32> -> !torch.vtensor<[1,3,1,1,5,4],f32>
return %42: !torch.vtensor<[1,3,1,1,5,4],f32>
}

// -----
// CHECK-LABEL: func.func @torch.aten.remainder.Scalar(
// CHECK-SAME: %[[VAL_0:.*]]: !torch.vtensor<[2,4],f32>) -> !torch.vtensor<[2,4],f32> {
Expand Down Expand Up @@ -3735,6 +3757,91 @@ func.func @torch.aten.convolution$full_dim_indivisible_by_stride_with_sliced_inp
return %5 : !torch.vtensor<[1,32,75,75],f32>
}


// -----

// CHECK-LABEL: func.func @torch.aten.convolution$full_dim_indivisible_by_stride_without_sliced_input_dynamic_batch(
// CHECK-SAME: %[[VAL_0:[0-9]+|[a-zA-Z$._-][a-zA-Z0-9$._-]*]]: !torch.vtensor<[?,3,224,224],f32>) -> !torch.vtensor<[?,32,112,112],f32> {
// CHECK: %[[VAL_1:.*]] = torch_c.to_builtin_tensor %[[VAL_0]] : !torch.vtensor<[?,3,224,224],f32> -> tensor<?x3x224x224xf32>
// CHECK: %[[VAL_2:.*]] = torch.constant.bool false
// CHECK: %[[VAL_3:.*]] = torch.constant.int 1
// CHECK: %[[VAL_4:.*]] = "tosa.const"() <{values = dense_resource<torch_tensor_32_3_3_3_torch.float32> : tensor<32x3x3x3xf32>}> : () -> tensor<32x3x3x3xf32>
// CHECK: %[[VAL_5:.*]] = torch.constant.none
// CHECK: %[[VAL_6:.*]] = torch.constant.int 2
// CHECK: %[[VAL_7:.*]] = torch.prim.ListConstruct %[[VAL_6]], %[[VAL_6]] : (!torch.int, !torch.int) -> !torch.list<int>
// CHECK: %[[VAL_8:.*]] = torch.prim.ListConstruct %[[VAL_3]], %[[VAL_3]] : (!torch.int, !torch.int) -> !torch.list<int>
// CHECK: %[[VAL_9:.*]] = torch.prim.ListConstruct %[[VAL_3]], %[[VAL_3]] : (!torch.int, !torch.int) -> !torch.list<int>
// CHECK: %[[VAL_10:.*]] = torch.prim.ListConstruct : () -> !torch.list<int>
// CHECK: %[[VAL_11:.*]] = "tosa.const"() <{values = dense<0.000000e+00> : tensor<32xf32>}> : () -> tensor<32xf32>
// CHECK: %[[VAL_12:.*]] = tosa.transpose %[[VAL_1]] {perms = array<i32: 0, 2, 3, 1>} : (tensor<?x3x224x224xf32>) -> tensor<?x224x224x3xf32>
// CHECK: %[[VAL_13:.*]] = tosa.transpose %[[VAL_4]] {perms = array<i32: 0, 2, 3, 1>} : (tensor<32x3x3x3xf32>) -> tensor<32x3x3x3xf32>
// CHECK: %[[VAL_14:.*]] = "tosa.const"() <{values = dense<0.000000e+00> : tensor<1xf32>}> : () -> tensor<1xf32>
// CHECK: %[[VAL_15:.*]] = "tosa.const"() <{values = dense<0.000000e+00> : tensor<1xf32>}> : () -> tensor<1xf32>
// CHECK: %[[VAL_16:.*]] = tosa.conv2d %[[VAL_12]], %[[VAL_13]], %[[VAL_11]], %[[VAL_14]], %[[VAL_15]] {acc_type = f32, dilation = array<i64: 1, 1>, pad = array<i64: 1, 0, 1, 0>, stride = array<i64: 2, 2>} : (tensor<?x224x224x3xf32>, tensor<32x3x3x3xf32>, tensor<32xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<?x112x112x32xf32>
// CHECK: %[[VAL_17:.*]] = tosa.transpose %[[VAL_16]] {perms = array<i32: 0, 3, 1, 2>} : (tensor<?x112x112x32xf32>) -> tensor<?x32x112x112xf32>
// CHECK: %[[VAL_18:.*]] = tensor.cast %[[VAL_17]] : tensor<?x32x112x112xf32> to tensor<?x32x112x112xf32>
// CHECK: %[[VAL_19:.*]] = torch_c.from_builtin_tensor %[[VAL_18]] : tensor<?x32x112x112xf32> -> !torch.vtensor<[?,32,112,112],f32>
// CHECK: return %[[VAL_19]]

func.func @torch.aten.convolution$full_dim_indivisible_by_stride_without_sliced_input_dynamic_batch(%arg0: !torch.vtensor<[?,3,224,224],f32>) -> !torch.vtensor<[?,32,112,112],f32> {
%false = torch.constant.bool false
%int1 = torch.constant.int 1
%0 = torch.vtensor.literal(dense_resource<torch_tensor_32_3_3_3_torch.float32> : tensor<32x3x3x3xf32>) : !torch.vtensor<[32,3,3,3],f32>
%none = torch.constant.none
%int2 = torch.constant.int 2
%1 = torch.prim.ListConstruct %int2, %int2 : (!torch.int, !torch.int) -> !torch.list<int>
%2 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<int>
%3 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<int>
%4 = torch.prim.ListConstruct : () -> !torch.list<int>
%5 = torch.aten.convolution %arg0, %0, %none, %1, %2, %3, %false, %4, %int1 : !torch.vtensor<[?,3,224,224],f32>, !torch.vtensor<[32,3,3,3],f32>, !torch.none, !torch.list<int>, !torch.list<int>, !torch.list<int>, !torch.bool, !torch.list<int>, !torch.int -> !torch.vtensor<[?,32,112,112],f32>
return %5 : !torch.vtensor<[?,32,112,112],f32>
}


// -----

// CHECK-LABEL: func.func @torch.aten.convolution$full_dim_indivisible_by_stride_with_sliced_input_dynamic_batch(
// CHECK-SAME: %[[VAL_0:[0-9]+|[a-zA-Z$._-][a-zA-Z0-9$._-]*]]: !torch.vtensor<[?,3,225,225],f32>) -> !torch.vtensor<[?,32,75,75],f32> {
// CHECK: %[[VAL_1:.*]] = torch_c.to_builtin_tensor %[[VAL_0]] : !torch.vtensor<[?,3,225,225],f32> -> tensor<?x3x225x225xf32>
// CHECK: %[[VAL_2:.*]] = torch.constant.bool false
// CHECK: %[[VAL_3:.*]] = torch.constant.int 1
// CHECK: %[[VAL_4:.*]] = "tosa.const"() <{values = dense_resource<torch_tensor_32_3_3_3_torch.float32> : tensor<32x3x3x3xf32>}> : () -> tensor<32x3x3x3xf32>
// CHECK: %[[VAL_5:.*]] = torch.constant.none
// CHECK: %[[VAL_6:.*]] = torch.constant.int 3
// CHECK: %[[VAL_7:.*]] = torch.prim.ListConstruct %[[VAL_6]], %[[VAL_6]] : (!torch.int, !torch.int) -> !torch.list<int>
// CHECK: %[[VAL_8:.*]] = torch.prim.ListConstruct %[[VAL_3]], %[[VAL_3]] : (!torch.int, !torch.int) -> !torch.list<int>
// CHECK: %[[VAL_9:.*]] = torch.prim.ListConstruct %[[VAL_3]], %[[VAL_3]] : (!torch.int, !torch.int) -> !torch.list<int>
// CHECK: %[[VAL_10:.*]] = torch.prim.ListConstruct : () -> !torch.list<int>
// CHECK: %[[VAL_11:.*]] = "tosa.const"() <{values = dense<0.000000e+00> : tensor<32xf32>}> : () -> tensor<32xf32>
// CHECK: %[[VAL_12:.*]] = tosa.transpose %[[VAL_1]] {perms = array<i32: 0, 2, 3, 1>} : (tensor<?x3x225x225xf32>) -> tensor<?x225x225x3xf32>
// CHECK: %[[VAL_13:.*]] = tosa.transpose %[[VAL_4]] {perms = array<i32: 0, 2, 3, 1>} : (tensor<32x3x3x3xf32>) -> tensor<32x3x3x3xf32>
// CHECK: %[[VAL_14:.*]] = tosa.const_shape {values = dense<0> : tensor<4xindex>} : () -> !tosa.shape<4>
// CHECK: %[[VAL_15:.*]] = tosa.const_shape {values = dense<[-1, 224, 225, 3]> : tensor<4xindex>} : () -> !tosa.shape<4>
// CHECK: %[[VAL_16:.*]] = tosa.slice %[[VAL_12]], %[[VAL_14]], %[[VAL_15]] : (tensor<?x225x225x3xf32>, !tosa.shape<4>, !tosa.shape<4>) -> tensor<?x224x225x3xf32>
// CHECK: %[[VAL_17:.*]] = tosa.const_shape {values = dense<0> : tensor<4xindex>} : () -> !tosa.shape<4>
// CHECK: %[[VAL_18:.*]] = tosa.const_shape {values = dense<[-1, 224, 224, 3]> : tensor<4xindex>} : () -> !tosa.shape<4>
// CHECK: %[[VAL_19:.*]] = tosa.slice %[[VAL_16]], %[[VAL_17]], %[[VAL_18]] : (tensor<?x224x225x3xf32>, !tosa.shape<4>, !tosa.shape<4>) -> tensor<?x224x224x3xf32>
// CHECK: %[[VAL_20:.*]] = "tosa.const"() <{values = dense<0.000000e+00> : tensor<1xf32>}> : () -> tensor<1xf32>
// CHECK: %[[VAL_21:.*]] = "tosa.const"() <{values = dense<0.000000e+00> : tensor<1xf32>}> : () -> tensor<1xf32>
// CHECK: %[[VAL_22:.*]] = tosa.conv2d %[[VAL_19]], %[[VAL_13]], %[[VAL_11]], %[[VAL_20]], %[[VAL_21]] {acc_type = f32, dilation = array<i64: 1, 1>, pad = array<i64: 1, 0, 1, 0>, stride = array<i64: 3, 3>} : (tensor<?x224x224x3xf32>, tensor<32x3x3x3xf32>, tensor<32xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<?x75x75x32xf32>
// CHECK: %[[VAL_23:.*]] = tosa.transpose %[[VAL_22]] {perms = array<i32: 0, 3, 1, 2>} : (tensor<?x75x75x32xf32>) -> tensor<?x32x75x75xf32>
// CHECK: %[[VAL_24:.*]] = tensor.cast %[[VAL_23]] : tensor<?x32x75x75xf32> to tensor<?x32x75x75xf32>
// CHECK: %[[VAL_25:.*]] = torch_c.from_builtin_tensor %[[VAL_24]] : tensor<?x32x75x75xf32> -> !torch.vtensor<[?,32,75,75],f32>
// CHECK: return %[[VAL_25]]
func.func @torch.aten.convolution$full_dim_indivisible_by_stride_with_sliced_input_dynamic_batch(%arg0: !torch.vtensor<[?,3,225,225],f32>) -> !torch.vtensor<[?,32,75,75],f32> {
%false = torch.constant.bool false
%int1 = torch.constant.int 1
%0 = torch.vtensor.literal(dense_resource<torch_tensor_32_3_3_3_torch.float32> : tensor<32x3x3x3xf32>) : !torch.vtensor<[32,3,3,3],f32>
%none = torch.constant.none
%int3 = torch.constant.int 3
%1 = torch.prim.ListConstruct %int3, %int3 : (!torch.int, !torch.int) -> !torch.list<int>
%2 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<int>
%3 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<int>
%4 = torch.prim.ListConstruct : () -> !torch.list<int>
%5 = torch.aten.convolution %arg0, %0, %none, %1, %2, %3, %false, %4, %int1 : !torch.vtensor<[?,3,225,225],f32>, !torch.vtensor<[32,3,3,3],f32>, !torch.none, !torch.list<int>, !torch.list<int>, !torch.list<int>, !torch.bool, !torch.list<int>, !torch.int -> !torch.vtensor<[?,32,75,75],f32>
return %5 : !torch.vtensor<[?,32,75,75],f32>
}

// -----

// CHECK-LABEL: func.func @torch.aten.max_pool2d$zero_pad_with_sliced_input(
Expand Down
Loading