This is the implementation of our paper "Bayesian DeNet: Monocular Depth Prediction and Frame-wise Fusion with Synchronized Uncertainty".
Demo Video:
- Tensorflow
- OpenCV
- Numpy
- Eigen
rgb/00000000.png, depth/00000000.png
rgb/00000001.png, depth/00000001.png
rgb/00000002.png, depth/00000002.png
...
Run
python predict.py --rgb_path='rgb.png' --model_path='model' --depth_path='depth.png' --confidence_path='confidence.png'
To train the model, run
python train.py --filelist_path='filelist.txt' --pretrain_model_path='resnet50.npy' --output_models_dir='/home/xx/saved_models'
Run
python data_aug.py
cd fusion
mkdir build && cd build
cmake .. && make -j4
./fusion
If you find this code useful, please cite:
@article{BayesianDeNet,
title={Bayesian DeNet: Monocular Depth Prediction and Frame-wise Fusion with Synchronized Uncertainty},
author={X. Yang and Y. Gao and H. Luo and C. Liao and K. Cheng},
journal={IEEE Transactions on Multimedia},
year = {2019},
}
We thank FCRN for their released code.