-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Showing
54 changed files
with
14,694 additions
and
0 deletions.
There are no files selected for viewing
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,96 @@ | ||
<html> | ||
<table class="pt10_r20"> | ||
<tr> | ||
<td class="vtop_zero">13.</td> | ||
<td class="vtop_lten"> | ||
The maximum of two numbers $x$ and $y$ is denoted by $\text{max}(x, y)$. Thus $\text{max}(-1,3) = \text{max}(3,3) = 3$, and | ||
$\text{max}(-1,-4) = \text{max}(-4,-1) = -1$. The minimum of $x$ and $y$ is denoted by $\text{min}(x,y)$. Prove that | ||
$$ | ||
\begin{align} | ||
\begin{split} | ||
\text{max}(x,y) &= \frac{x+y+|y-x|}{2}, \\ | ||
\text{min}(x,y) &= \frac{x+y-|y-x|}{2}. | ||
\end{split} | ||
\end{align} | ||
$$ | ||
Derive a formula for $\text{max}(x,y,z)$ and $\text{min}(x,y,z)$, using, for example | ||
$$ | ||
\text{max}(x,y,z) = \text{max}(x, \text{max}(y,z)). | ||
$$ | ||
</td> | ||
</tr> | ||
</table> | ||
<table class="pr_20"> | ||
<tr> | ||
<td class="vtop_zero">14.</td> | ||
<td class="vtop_lten">(a)</td> | ||
<td class="vtop_lten"> | ||
Prove that $|a|=|-a|.$ (The trick is not to become confused by too many cases. First prove the statement for $a \geq 0$. Why is it then obvious for $a \leq 0$?) | ||
</td> | ||
</tr> | ||
<tr> | ||
<td class="vtop_zero"></td> | ||
<td class="vtop_lten">(b)</td> | ||
<td class="vtop_lten"> | ||
Prove that $-b \leq a \leq b$ if and only if $|a| \leq b.$ In particular, it follows that $-|a| \leq a \leq |a|.$ | ||
</td> | ||
</tr> | ||
<tr> | ||
<td class="vtop_zero"></td> | ||
<td class="vtop_lten">(c)</td> | ||
<td class="vtop_lten">Use this fact to give a new proof that $|a+b| \leq |a|+|b|.$</td> | ||
</tr> | ||
</table> | ||
<table class="pt_20"> | ||
<tr> | ||
<td class="vtop_zero_cgrey">15.</td> | ||
<td class="vtop_lten"> | ||
Prove that if $x$ and $y$ are not both $0$, then $$x^2+xy+y^2 >0, \\ x^4+x^3y+x^2y^2+xy^3+y^4 >0.$$ | ||
<span style="padding:0 0 0 3">Hint: Use Problem 1.</span> | ||
</td> | ||
</tr> | ||
</table> | ||
<table class="pt20_r20"> | ||
<tr> | ||
<td class="vtop_zero_cgrey">16.</td> | ||
<td class="vtop_lten">(a)</td> | ||
<td class="vtop_lten"> | ||
Show that | ||
<table class="pt20_r20"> | ||
<tr> | ||
<td class="vtop_lten">$(x+y)^2 = x^2+y^2$</td> | ||
<td class="vtop_l20">only when $x=0$ or $y=0$,</td> | ||
</tr> | ||
<tr> | ||
<td class="vtop_lten">$(x+y)^3 = x^3+y^3$</td> | ||
<td class="vtop_l20">only when $x=0$ or $y=0$ or $x=-y.$</td> | ||
</tr> | ||
</table> | ||
</td> | ||
</tr> | ||
<tr> | ||
<td class="vtop_zero"></td> | ||
<td class="vtop_lten">(b)</td> | ||
<td class="vtop_lten"> | ||
Using the fact that $$x^2+2xy+y^2 = (x+y)^2 \geq 0,$$ show that $4x^2+6xy+4y^2 >0$ unless $x$ and $y$ are both $0$. | ||
</td> | ||
</tr> | ||
<tr> | ||
<td class="vtop_zero"></td> | ||
<td class="vtop_lten">(c)</td> | ||
<td class="vtop_lten"> | ||
Use part (b) to find out when $(x+y)^4 = x^4+y^4.$ | ||
</td> | ||
</tr> | ||
<tr> | ||
<td class="vtop_zero"></td> | ||
<td class="vtop_lten">(d)</td> | ||
<td class="vtop_lten"> | ||
Find out when $(x+y)^5 = x^5+y^5.$ Hint: From the assumption $(x+y)^5$ $=x^5+y^5$ you should be able to derive the equation $x^3+2x^2y+y^3 =$ $0,$ if $x,y \neq 0.$ This implies that $(x+y)^3=x^2y+xy^2=xy(x+y).$ | ||
</td> | ||
</tr> | ||
</table> | ||
<p class="r20L44_font16"> | ||
You should now be able to make a good guess as to when $(x+y)^n = x^n+y^n;$ the proof is contained in Problem 11–63. | ||
</p> | ||
</html> |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,122 @@ | ||
<html> | ||
<table class="pt10_r20"> | ||
<tr> | ||
<td class="vtop_zero">17.</td> | ||
<td class="vtop_lten"> | ||
<table class="pzero"> | ||
<tr> | ||
<td class="vtop_zero">(a)</td> | ||
<td class="vtop_lten"> | ||
Find the smallest possible value of $2x^2-3x+4$. Hint: "Complete the square," i.e., write $2x^2-3x+4 = 2(x-3/4)^2+$ ? | ||
</td> | ||
</tr> | ||
<tr> | ||
<td class="vtop_zero">(b)</td> | ||
<td class="vtop_lten"> | ||
Find the smallest possible value of $x^2-3x+2y^2+4y+2$. | ||
</td> | ||
</tr> | ||
<tr> | ||
<td class="vtop_zero">(c)</td> | ||
<td class="vtop_lten"> | ||
Find the smallest possible value of $x^2-4xy+5y^2-4x-6y+7$. | ||
</td> | ||
</tr> | ||
</table> | ||
</td> | ||
</tr> | ||
</table> | ||
<table class="pt20_r20"> | ||
<tr> | ||
<td class="vtop_zero">18.</td> | ||
<td class="vtop_zero"> | ||
<table class="pzero"> | ||
<tr> | ||
<td class="vtop_lten">(a)</td> | ||
<td class="vtop_lten"> | ||
Suppose that $b^2-4c \geq 0.$ Show that the numbers | ||
$$ | ||
\frac{-b+\displaystyle\sqrt{{b}^2-4c}}{2} \ , \ \ \ \ \ \ \ \frac{-b-\displaystyle\sqrt{{b}^2-4c}}{2} | ||
$$ | ||
both satisfy the equation $x^2+bx+c=0$. | ||
</td> | ||
</tr> | ||
<tr> | ||
<td class="vtop_lten">(b)</td> | ||
<td class="vtop_lten"> | ||
Suppose that $b^2-4c < 0.$ Show that there are no numbers $x$ satisfying $x^2+bx+c=0;$ in fact $x^2+bx+c > 0$ for all $x.$ Hint: Complete the square. | ||
</td> | ||
</tr> | ||
<tr> | ||
<td class="vtop_lten">(c)</td> | ||
<td class="vtop_lten"> | ||
Use this fact to give another proof that if $x$ and $y$ are not both $0$, then $x^2+xy+y^2 > 0.$ | ||
</td> | ||
</tr> | ||
<tr> | ||
<td class="vtop_lten">(d)</td> | ||
<td class="vtop_lten"> | ||
For which numbers $\alpha$ is it true that $x^2 + \alpha xy + y^2 > 0$ whenever $x$ and $y$ are not both $0$? | ||
</td> | ||
</tr> | ||
<tr> | ||
<td class="vtop_lten">(e)</td> | ||
<td class="vtop_lten"> | ||
Find the smallest possible value of $x^2+bx+c$ and of $ax^2+bx+c$ for $a > 0.$ | ||
</td> | ||
</tr> | ||
</table> | ||
</td> | ||
</tr> | ||
</table> | ||
<table class="pt20_r20_b10"> | ||
<tr> | ||
<td class="vtop_zero">19.</td> | ||
<td class="vtop_lten"> | ||
The fact that $a^2 \geq 0$ for all numbers $a$, elementary as it may seem, is the fundamental idea upon which most important inequalities are ultimately based. The great–granddaddy of all inequalities is the <i>Schwartz inequality</i>. | ||
|
||
$$x_1y_1+x_2y_2 \leq \displaystyle\sqrt{{x_1}^2 + {x_2}^2}\sqrt{{y_1}^2 + {y_2}^2}.$$ | ||
|
||
(A more general form occurs in Problem 2–21.) The three proofs of the Schwarz inequality outlined below have only one thing in common—their reliance on the fact that $a^2 \geq 0$ for all $a$. | ||
<table class="pt10"> | ||
<tr> | ||
<td class="vtop_zero">(a)</td> | ||
<td class="vtop_lten"> | ||
Prove that if $x_1=\lambda y_1$ and $x_2=\lambda y_2$ for some number $\lambda \geq 0,$ then equality holds in the Schwarz inequality. Prove the same thing if $y_1=y_2=0.$ Now suppose that $y_1$ and $y_2$ are not both $0,$ and that there is no number $\lambda$ such that $x_1=\lambda y_1$ and $x_2= \lambda y_2.$ Then | ||
$$ | ||
\begin{eqnarray} | ||
0 &<& (\lambda y_1 - x_1)^2 + (\lambda y_2 - x_2)^2 \\ | ||
&=& \lambda^2({y_1}^2 + {y_2}^2) - 2\lambda (x_1y_1 + x_2y_2)+({x_1}^2+{x_2}^2). | ||
\end{eqnarray} | ||
$$ | ||
Using Problem 18, complete the proof of the Schwarz inequality. | ||
</td> | ||
</tr> | ||
<tr> | ||
<td class="vtop_zero">(b)</td> | ||
<td class="vtop_lten"> | ||
Prove the Schwarz inequality by using $2xy \leq x^2+y^2$ (how is this derived?) with | ||
$$ | ||
x = \frac{x_i}{\displaystyle\sqrt{{x_1}^2 + {x_2}^2}} \ , \ \ \ \ \ \ \ \ | ||
y = \frac{y_i}{\displaystyle\sqrt{{y_1}^2 + {y_2}^2}} \ , | ||
$$ | ||
first for $i=1$, and then for $i=2.$ | ||
</td> | ||
</tr> | ||
<tr> | ||
<td class="vtop_zero">(c)</td> | ||
<td class="vtop_lten"> | ||
Prove the Schwarz inequality by first proving that $$({x_1}^2+{x_2}^2)({y_1}^2+{y_2}^2) = (x_1y_1 + x_2y_2)^2+(x_1y_2 - x_2y_1)^2.$$ | ||
</td> | ||
</tr> | ||
<tr> | ||
<td class="vtop_zero">(d)</td> | ||
<td class="vtop_lten"> | ||
Deduce, from each of these proofs, that equality holds only when $y_1=y_2=0$ or when there is a number $\lambda \geq 0$ such that $x_1=\lambda y_1$ and $x_2=\lambda y_2.$ | ||
</td> | ||
</tr> | ||
</table> | ||
</td> | ||
</tr> | ||
</table> | ||
</html> |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,72 @@ | ||
<html> | ||
<table class="pt10_r20"> | ||
<tr> | ||
<td class="vtop_zero"> | ||
In our later work, three facts about inequalities will be crucial. Although proofs will be supplied at the appropriate point in the text, a personal assault on these problems is infinitely more enlightening than a perusal of a completely worked-out proof. The statements of these propositions involve some weird numbers, but their basic message is simple: if $x$ is close enough to $x_0,$ and $y$ is close enough to $y_0,$ then $x+y$ will be close to $x_0+y_0,$ and $xy$ will be close to $x_0y_0,$ and $1/y$ will be close to $1/y_0.$ The symbol "$\varepsilon$" which appears in these propositions is the fifth letter of the Greek alphabet ("epsilon"), and could just as well be replaced by a less intimidating Roman letter; however, tradition has made the use of $\varepsilon$ sacrosanct in the contexts to which these theorems apply. | ||
</td> | ||
</tr> | ||
</table> | ||
<table class="pt20_r20"> | ||
<tr> | ||
<td class="vtop_zero">20.</td> | ||
<td class="vtop_lten"> | ||
Prove that if $\vert x-x_0 \rvert < \dfrac{\varepsilon}{2}$ and $\lvert y-y_0 \rvert < \dfrac{\varepsilon}{2},$ then | ||
<p style="padding-left:20%"> | ||
$ | ||
\begin{align} | ||
\lvert (x+y) - (x_0+y_0) \rvert &< \varepsilon, \\ | ||
\lvert (x-y) - (x_0-y_0) \rvert &< \varepsilon. | ||
\end{align} | ||
$ | ||
</p> | ||
</td> | ||
</tr> | ||
</table> | ||
<table class="pt20_r20"> | ||
<tr> | ||
<td class="vtop_zero_cgrey">21.</td> | ||
<td class="vtop_lten"> | ||
Prove that if | ||
$$ | ||
\lvert x-x_0 \rvert < \text{min} \bigg(\frac{\varepsilon}{2(\lvert y_0 \rvert +1)} \ , 1 \bigg) \ \ \ \ \text{and} \ \ \ \ \lvert y-y_0 \rvert < \frac{\varepsilon}{2(\lvert x_0 \rvert +1)} \ , | ||
$$ | ||
then $\lvert xy-x_0y_0 \rvert < \varepsilon.$ | ||
<br> | ||
(The notation "min" was defined in Problem 13, but the formula provided by that problem is irrelevent at the moment; the first inequality in the hypothesis just means that | ||
$$ | ||
\vert x-x_0 \rvert < \frac{\varepsilon}{2(\lvert y_0 \rvert+1)} \ \ \ \ \text{and} \ \ \ \ \lvert x-x_0 \rvert < 1; | ||
$$ | ||
at one point in the argument you will need the first inequality, and at another point you will need the second. One more word of advice: since the hypotheses only provide information about $x-x_0$ and $y-y_0,$ it is almost a foregone conclusion that the proof will depend upon writing $xy-x_0y_0$ in a way that involves $x-x_0$ and $y-y_0.$) | ||
</td> | ||
</tr> | ||
</table> | ||
<table class="pt20_r20"> | ||
<tr> | ||
<td class="vtop_zero_cgrey">22.</td> | ||
<td class="vtop_lten"> | ||
Prove that if $y_0 \neq 0$ and | ||
<div style="margin:10 0 0 70"> | ||
$ | ||
\displaystyle | ||
\lvert y-y_0 \rvert < \text{min} \bigg( \displaystyle\frac{\lvert y_0 \rvert}{2} \ , \frac{\varepsilon \lvert y_0 \rvert ^2}{2} \ \bigg), \ \text{then} \ y \neq 0, \ \text{and} \ \Bigg\lvert \frac{1}{y} - \frac{1}{y_0} \Bigg\rvert< \varepsilon. | ||
$ | ||
</div> | ||
</td> | ||
</tr> | ||
</table> | ||
<table class="pt20_r20"> | ||
<tr> | ||
<td class="vtop_zero_cgrey">23.</td> | ||
<td class="vtop_lten"> | ||
Replace the question marks in the following statement by expressions involving $\varepsilon, \ x_0$ and $y_0$ so that the conclusion will be true: | ||
<p> | ||
If $y_0 \neq 0$ and | ||
$$\lvert y-y_0 \rvert < \ ? \ \ \ \ \text{and} \ \ \ \ \lvert x-x_0 \rvert < \ ?$$ | ||
then $y \neq 0$ and | ||
$$\Bigg\lvert \frac{x}{y} \ - \frac{x_0}{y_0} \ \Bigg\rvert < \varepsilon.$$ | ||
This problem is trivial in the sense that its solution follows from Problem 21 and 22 with almost no work at all (notice that $x/y=x \cdot 1/y$). The crucial point is not to become confused; decide which of the two problems should be used first, and don't panic if your answer looks unlikely. | ||
</p> | ||
</td> | ||
</tr> | ||
</table> | ||
</html> |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,90 @@ | ||
<html> | ||
<table class="pt10_r20"> | ||
<tr> | ||
<td class="vtop_zero_cgrey">24.</td> | ||
<td class="pl_10"> | ||
This problem shows that the actual placement of parentheses in a sum is irrelevant. The proofs involve "mathematical induction"; if you are not familiar with such proofs, but still want to tackle this problem, it can be saved until after Chapter 2, where proofs by induction are explained. | ||
<br> | ||
Let us agree, for definiteness, that $a_1+ \cdots + a_k$ will denote | ||
$$a_1 + (a_2 + (a_3 + \cdots + (a_{n-2} + (a_{n-1}+a_n))) \cdots).$$ | ||
Thus $a_1+a_2+a_3$ denotes $a_1+(a_2+a_3),$ and $a_1+a_2+a_3+a_4$ denotes $a_1+(a_2+(a_3+a_4)),$ etc. | ||
<table class="pt_15"> | ||
<tr> | ||
<td class="vtop_zero">(a)</td> | ||
<td class="vtop_lten"> | ||
Prove that | ||
$$(a_1+ \cdots + a_k)+a_{k+1} = a_1+ \cdots + a_{k+1}.$$ | ||
Hint: Use induction on $k$. | ||
</td> | ||
</tr> | ||
<tr> | ||
<td class="vtop_zero">(b)</td> | ||
<td class="vtop_lten"> | ||
Prove that if $k \leq n,$ then | ||
$$(a_1+ \cdots + a_k)+(a_{k+1}+ \cdots + a_n) = a_1+ \cdots + a_n.$$ | ||
Hint: Use part (a) to give a proof by induction on $k$. | ||
</td> | ||
</tr> | ||
<tr> | ||
<td class="vtop_zero">(c)</td> | ||
<td class="vtop_lten"> | ||
Let $s(a_1, \dots, a_k)$ be some sum formed from $a_1, \dots, a_k.$ Show that | ||
$$s(a_1, \dots, a_k) = a_1 + \cdots + a_k.$$ | ||
Hint: There must be two sums $s'(a_1, \dots, a_l)$ and $s''(a_{l+1}, \dots, a_k)$ such that | ||
$$s(a_1, \dots, a_k) = s'(a_1, \dots, a_l) + s''(a_{l+1}, \dots, a_k).$$ | ||
</td> | ||
</tr> | ||
</table> | ||
</td> | ||
</tr> | ||
</table> | ||
<table class="pt20_r20"> | ||
<tr> | ||
<td class="vtop_zero_cgrey">25.</td> | ||
<td class="pl_10"> | ||
Suppose that we interpret "number" to mean either $0$ or $1$, and + and $\cdot$ to be the operations defined by the following two tables. | ||
<div style="padding:0 0 0 50"> | ||
<div style="float:left"> | ||
<table style="border-collapse:collapse"> | ||
<tr> | ||
<td style="padding:10 19 10 19">$+$</td> | ||
<td style="padding:10 19 10 19">$0$</td> | ||
<td style="padding:10 19 10 19">$1$</td> | ||
</tr> | ||
<tr> | ||
<td style="padding:10 19 0 19">$0$</td> | ||
<td style="border:1 solid grey; padding:10 19 10 19">$0$</td> | ||
<td style="border:1 solid grey; padding:10 19 10 19">$0$</td> | ||
</tr> | ||
<tr> | ||
<td style="padding:10 19 0 19">$1$</td> | ||
<td style="border:1 solid grey; padding:10 19 10 19">$1$</td> | ||
<td style="border:1 solid grey; padding:10 19 10 19">$0$</td> | ||
</tr> | ||
</table> | ||
</div> | ||
<div style="float:left; padding:0 0 0 50"> | ||
<table style="border-collapse:collapse"> | ||
<tr> | ||
<td style="padding:10 19 10 19">$\cdot$</td> | ||
<td style="padding:10 19 10 19">$0$</td> | ||
<td style="padding:10 19 10 19">$1$</td> | ||
</tr> | ||
<tr> | ||
<td style="padding:10 19 0 19">$0$</td> | ||
<td style="border:1 solid grey; padding:10 19 10 19">$0$</td> | ||
<td style="border:1 solid grey; padding:10 19 10 19">$0$</td> | ||
</tr> | ||
<tr> | ||
<td style="padding:10 19 0 19">$1$</td> | ||
<td style="border:1 solid grey; padding:10 19 10 19">$1$</td> | ||
<td style="border:1 solid grey; padding:10 19 10 19">$0$</td> | ||
</tr> | ||
</table> | ||
</div> | ||
</div> | ||
</td> | ||
</tr> | ||
</table> | ||
<p style="padding-left:92; font-size:16">Check that properties P1–P9 all hold, even though $1+1=0.$</p> | ||
</html> |
Oops, something went wrong.