Skip to content

Commit

Permalink
init NAFNet code
Browse files Browse the repository at this point in the history
  • Loading branch information
mayorx committed Apr 11, 2022
1 parent 46827ac commit 01a4c86
Show file tree
Hide file tree
Showing 75 changed files with 122,422 additions and 1 deletion.
1 change: 1 addition & 0 deletions VERSION
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
1.2.0
135 changes: 135 additions & 0 deletions basicsr/data/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,135 @@
# ------------------------------------------------------------------------
# Copyright (c) 2021 megvii-model. All Rights Reserved.
# ------------------------------------------------------------------------
# Modified from BasicSR (https://github.com/xinntao/BasicSR)
# Copyright 2018-2020 BasicSR Authors
# ------------------------------------------------------------------------

import importlib
import numpy as np
import random
import torch
import torch.utils.data
from functools import partial
from os import path as osp

from basicsr.data.prefetch_dataloader import PrefetchDataLoader
from basicsr.utils import get_root_logger, scandir
from basicsr.utils.dist_util import get_dist_info

__all__ = ['create_dataset', 'create_dataloader']

# automatically scan and import dataset modules
# scan all the files under the data folder with '_dataset' in file names
data_folder = osp.dirname(osp.abspath(__file__))
dataset_filenames = [
osp.splitext(osp.basename(v))[0] for v in scandir(data_folder)
if v.endswith('_dataset.py')
]
# import all the dataset modules
_dataset_modules = [
importlib.import_module(f'basicsr.data.{file_name}')
for file_name in dataset_filenames
]


def create_dataset(dataset_opt):
"""Create dataset.
Args:
dataset_opt (dict): Configuration for dataset. It constains:
name (str): Dataset name.
type (str): Dataset type.
"""
dataset_type = dataset_opt['type']

# dynamic instantiation
for module in _dataset_modules:
dataset_cls = getattr(module, dataset_type, None)
if dataset_cls is not None:
break
if dataset_cls is None:
raise ValueError(f'Dataset {dataset_type} is not found.')

dataset = dataset_cls(dataset_opt)

logger = get_root_logger()
logger.info(
f'Dataset {dataset.__class__.__name__} - {dataset_opt["name"]} '
'is created.')
return dataset


def create_dataloader(dataset,
dataset_opt,
num_gpu=1,
dist=False,
sampler=None,
seed=None):
"""Create dataloader.
Args:
dataset (torch.utils.data.Dataset): Dataset.
dataset_opt (dict): Dataset options. It contains the following keys:
phase (str): 'train' or 'val'.
num_worker_per_gpu (int): Number of workers for each GPU.
batch_size_per_gpu (int): Training batch size for each GPU.
num_gpu (int): Number of GPUs. Used only in the train phase.
Default: 1.
dist (bool): Whether in distributed training. Used only in the train
phase. Default: False.
sampler (torch.utils.data.sampler): Data sampler. Default: None.
seed (int | None): Seed. Default: None
"""
phase = dataset_opt['phase']
rank, _ = get_dist_info()
if phase == 'train':
if dist: # distributed training
batch_size = dataset_opt['batch_size_per_gpu']
num_workers = dataset_opt['num_worker_per_gpu']
else: # non-distributed training
multiplier = 1 if num_gpu == 0 else num_gpu
batch_size = dataset_opt['batch_size_per_gpu'] * multiplier
num_workers = dataset_opt['num_worker_per_gpu'] * multiplier
dataloader_args = dict(
dataset=dataset,
batch_size=batch_size,
shuffle=False,
num_workers=num_workers,
sampler=sampler,
drop_last=True,
persistent_workers=True
)
if sampler is None:
dataloader_args['shuffle'] = True
dataloader_args['worker_init_fn'] = partial(
worker_init_fn, num_workers=num_workers, rank=rank,
seed=seed) if seed is not None else None
elif phase in ['val', 'test']: # validation
dataloader_args = dict(
dataset=dataset, batch_size=1, shuffle=False, num_workers=0)
else:
raise ValueError(f'Wrong dataset phase: {phase}. '
"Supported ones are 'train', 'val' and 'test'.")

dataloader_args['pin_memory'] = dataset_opt.get('pin_memory', False)

prefetch_mode = dataset_opt.get('prefetch_mode')
if prefetch_mode == 'cpu': # CPUPrefetcher
num_prefetch_queue = dataset_opt.get('num_prefetch_queue', 1)
logger = get_root_logger()
logger.info(f'Use {prefetch_mode} prefetch dataloader: '
f'num_prefetch_queue = {num_prefetch_queue}')
return PrefetchDataLoader(
num_prefetch_queue=num_prefetch_queue, **dataloader_args)
else:
# prefetch_mode=None: Normal dataloader
# prefetch_mode='cuda': dataloader for CUDAPrefetcher
return torch.utils.data.DataLoader(**dataloader_args)


def worker_init_fn(worker_id, num_workers, rank, seed):
# Set the worker seed to num_workers * rank + worker_id + seed
worker_seed = num_workers * rank + worker_id + seed
np.random.seed(worker_seed)
random.seed(worker_seed)
56 changes: 56 additions & 0 deletions basicsr/data/data_sampler.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,56 @@
# ------------------------------------------------------------------------
# Copyright (c) 2021 megvii-model. All Rights Reserved.
# ------------------------------------------------------------------------
# Modified from BasicSR (https://github.com/xinntao/BasicSR)
# Copyright 2018-2020 BasicSR Authors
# ------------------------------------------------------------------------

import math
import torch
from torch.utils.data.sampler import Sampler


class EnlargedSampler(Sampler):
"""Sampler that restricts data loading to a subset of the dataset.
Modified from torch.utils.data.distributed.DistributedSampler
Support enlarging the dataset for iteration-based training, for saving
time when restart the dataloader after each epoch
Args:
dataset (torch.utils.data.Dataset): Dataset used for sampling.
num_replicas (int | None): Number of processes participating in
the training. It is usually the world_size.
rank (int | None): Rank of the current process within num_replicas.
ratio (int): Enlarging ratio. Default: 1.
"""

def __init__(self, dataset, num_replicas, rank, ratio=1):
self.dataset = dataset
self.num_replicas = num_replicas
self.rank = rank
self.epoch = 0
self.num_samples = math.ceil(
len(self.dataset) * ratio / self.num_replicas)
self.total_size = self.num_samples * self.num_replicas

def __iter__(self):
# deterministically shuffle based on epoch
g = torch.Generator()
g.manual_seed(self.epoch)
indices = torch.randperm(self.total_size, generator=g).tolist()

dataset_size = len(self.dataset)
indices = [v % dataset_size for v in indices]

# subsample
indices = indices[self.rank:self.total_size:self.num_replicas]
assert len(indices) == self.num_samples

return iter(indices)

def __len__(self):
return self.num_samples

def set_epoch(self, epoch):
self.epoch = epoch
Loading

0 comments on commit 01a4c86

Please sign in to comment.