-
Notifications
You must be signed in to change notification settings - Fork 305
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
3 changed files
with
163 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,24 @@ | ||
build: | ||
cuda: "11.3" | ||
gpu: true | ||
python_version: "3.9" | ||
system_packages: | ||
- "libgl1-mesa-glx" | ||
- "libglib2.0-0" | ||
python_packages: | ||
- "numpy==1.21.1" | ||
- "ipython==7.21.0" | ||
- "addict==2.4.0" | ||
- "future==0.18.2" | ||
- "lmdb==1.3.0" | ||
- "opencv-python==4.5.5.64" | ||
- "Pillow==9.1.0" | ||
- "pyyaml==6.0" | ||
- "torch==1.11.0" | ||
- "torchvision==0.12.0" | ||
- "tqdm==4.64.0" | ||
- "scipy==1.8.0" | ||
- "scikit-image==0.19.2" | ||
- "matplotlib==3.5.1" | ||
|
||
predict: "predict.py:Predictor" |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,137 @@ | ||
import torch | ||
import numpy as np | ||
import cv2 | ||
import tempfile | ||
import matplotlib.pyplot as plt | ||
from cog import BasePredictor, Path, Input, BaseModel | ||
|
||
from basicsr.models import create_model | ||
from basicsr.utils import img2tensor as _img2tensor, tensor2img, imwrite | ||
from basicsr.utils.options import parse | ||
|
||
|
||
class Predictor(BasePredictor): | ||
def setup(self): | ||
opt_path_denoise = "options/test/SIDD/NAFNet-width64.yml" | ||
opt_denoise = parse(opt_path_denoise, is_train=False) | ||
opt_denoise["dist"] = False | ||
|
||
opt_path_deblur = "options/test/GoPro/NAFNet-width64.yml" | ||
opt_deblur = parse(opt_path_deblur, is_train=False) | ||
opt_deblur["dist"] = False | ||
|
||
opt_path_stereo = "options/test/NAFSSR/NAFSSR-L_4x.yml" | ||
opt_stereo = parse(opt_path_stereo, is_train=False) | ||
opt_stereo["dist"] = False | ||
|
||
self.models = { | ||
"Image Denoising": create_model(opt_denoise), | ||
"Image Debluring": create_model(opt_deblur), | ||
"Stereo Image Super-Resolution": create_model(opt_stereo), | ||
} | ||
|
||
def predict( | ||
self, | ||
task_type: str = Input( | ||
choices=[ | ||
"Image Denoising", | ||
"Image Debluring", | ||
"Stereo Image Super-Resolution", | ||
], | ||
default="Image Debluring", | ||
description="Choose task type.", | ||
), | ||
image: Path = Input( | ||
description="Input image. Stereo Image Super-Resolution, upload the left image here.", | ||
), | ||
image_r: Path = Input( | ||
default=None, | ||
description="Right Input image for Stereo Image Super-Resolution. Optional, only valid for Stereo" | ||
" Image Super-Resolution task.", | ||
), | ||
) -> Path: | ||
|
||
out_path = Path(tempfile.mkdtemp()) / "output.png" | ||
|
||
model = self.models[task_type] | ||
if task_type == "Stereo Image Super-Resolution": | ||
assert image_r is not None, ( | ||
"Please provide both left and right input image for " | ||
"Stereo Image Super-Resolution task." | ||
) | ||
|
||
img_l = imread(str(image)) | ||
inp_l = img2tensor(img_l) | ||
img_r = imread(str(image_r)) | ||
inp_r = img2tensor(img_r) | ||
stereo_image_inference(model, inp_l, inp_r, str(out_path)) | ||
|
||
else: | ||
|
||
img_input = imread(str(image)) | ||
inp = img2tensor(img_input) | ||
out_path = Path(tempfile.mkdtemp()) / "output.png" | ||
single_image_inference(model, inp, str(out_path)) | ||
|
||
return out_path | ||
|
||
|
||
def imread(img_path): | ||
img = cv2.imread(img_path) | ||
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) | ||
return img | ||
|
||
|
||
def img2tensor(img, bgr2rgb=False, float32=True): | ||
img = img.astype(np.float32) / 255.0 | ||
return _img2tensor(img, bgr2rgb=bgr2rgb, float32=float32) | ||
|
||
|
||
def single_image_inference(model, img, save_path): | ||
model.feed_data(data={"lq": img.unsqueeze(dim=0)}) | ||
|
||
if model.opt["val"].get("grids", False): | ||
model.grids() | ||
|
||
model.test() | ||
|
||
if model.opt["val"].get("grids", False): | ||
model.grids_inverse() | ||
|
||
visuals = model.get_current_visuals() | ||
sr_img = tensor2img([visuals["result"]]) | ||
imwrite(sr_img, save_path) | ||
|
||
|
||
def stereo_image_inference(model, img_l, img_r, out_path): | ||
img = torch.cat([img_l, img_r], dim=0) | ||
model.feed_data(data={"lq": img.unsqueeze(dim=0)}) | ||
|
||
if model.opt["val"].get("grids", False): | ||
model.grids() | ||
|
||
model.test() | ||
|
||
if model.opt["val"].get("grids", False): | ||
model.grids_inverse() | ||
|
||
visuals = model.get_current_visuals() | ||
img_L = visuals["result"][:, :3] | ||
img_R = visuals["result"][:, 3:] | ||
img_L, img_R = tensor2img([img_L, img_R], rgb2bgr=False) | ||
|
||
# save_stereo_image | ||
h, w = img_L.shape[:2] | ||
fig = plt.figure(figsize=(w // 40, h // 40)) | ||
ax1 = fig.add_subplot(2, 1, 1) | ||
plt.title("NAFSSR output (Left)", fontsize=14) | ||
ax1.axis("off") | ||
ax1.imshow(img_L) | ||
|
||
ax2 = fig.add_subplot(2, 1, 2) | ||
plt.title("NAFSSR output (Right)", fontsize=14) | ||
ax2.axis("off") | ||
ax2.imshow(img_R) | ||
|
||
plt.subplots_adjust(hspace=0.08) | ||
plt.savefig(str(out_path), bbox_inches="tight", dpi=600) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters