Skip to content

Commit

Permalink
replicate demo
Browse files Browse the repository at this point in the history
  • Loading branch information
chenxwh committed Apr 20, 2022
1 parent fea15dc commit f013110
Show file tree
Hide file tree
Showing 3 changed files with 163 additions and 0 deletions.
24 changes: 24 additions & 0 deletions cog.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,24 @@
build:
cuda: "11.3"
gpu: true
python_version: "3.9"
system_packages:
- "libgl1-mesa-glx"
- "libglib2.0-0"
python_packages:
- "numpy==1.21.1"
- "ipython==7.21.0"
- "addict==2.4.0"
- "future==0.18.2"
- "lmdb==1.3.0"
- "opencv-python==4.5.5.64"
- "Pillow==9.1.0"
- "pyyaml==6.0"
- "torch==1.11.0"
- "torchvision==0.12.0"
- "tqdm==4.64.0"
- "scipy==1.8.0"
- "scikit-image==0.19.2"
- "matplotlib==3.5.1"

predict: "predict.py:Predictor"
137 changes: 137 additions & 0 deletions predict.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,137 @@
import torch
import numpy as np
import cv2
import tempfile
import matplotlib.pyplot as plt
from cog import BasePredictor, Path, Input, BaseModel

from basicsr.models import create_model
from basicsr.utils import img2tensor as _img2tensor, tensor2img, imwrite
from basicsr.utils.options import parse


class Predictor(BasePredictor):
def setup(self):
opt_path_denoise = "options/test/SIDD/NAFNet-width64.yml"
opt_denoise = parse(opt_path_denoise, is_train=False)
opt_denoise["dist"] = False

opt_path_deblur = "options/test/GoPro/NAFNet-width64.yml"
opt_deblur = parse(opt_path_deblur, is_train=False)
opt_deblur["dist"] = False

opt_path_stereo = "options/test/NAFSSR/NAFSSR-L_4x.yml"
opt_stereo = parse(opt_path_stereo, is_train=False)
opt_stereo["dist"] = False

self.models = {
"Image Denoising": create_model(opt_denoise),
"Image Debluring": create_model(opt_deblur),
"Stereo Image Super-Resolution": create_model(opt_stereo),
}

def predict(
self,
task_type: str = Input(
choices=[
"Image Denoising",
"Image Debluring",
"Stereo Image Super-Resolution",
],
default="Image Debluring",
description="Choose task type.",
),
image: Path = Input(
description="Input image. Stereo Image Super-Resolution, upload the left image here.",
),
image_r: Path = Input(
default=None,
description="Right Input image for Stereo Image Super-Resolution. Optional, only valid for Stereo"
" Image Super-Resolution task.",
),
) -> Path:

out_path = Path(tempfile.mkdtemp()) / "output.png"

model = self.models[task_type]
if task_type == "Stereo Image Super-Resolution":
assert image_r is not None, (
"Please provide both left and right input image for "
"Stereo Image Super-Resolution task."
)

img_l = imread(str(image))
inp_l = img2tensor(img_l)
img_r = imread(str(image_r))
inp_r = img2tensor(img_r)
stereo_image_inference(model, inp_l, inp_r, str(out_path))

else:

img_input = imread(str(image))
inp = img2tensor(img_input)
out_path = Path(tempfile.mkdtemp()) / "output.png"
single_image_inference(model, inp, str(out_path))

return out_path


def imread(img_path):
img = cv2.imread(img_path)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
return img


def img2tensor(img, bgr2rgb=False, float32=True):
img = img.astype(np.float32) / 255.0
return _img2tensor(img, bgr2rgb=bgr2rgb, float32=float32)


def single_image_inference(model, img, save_path):
model.feed_data(data={"lq": img.unsqueeze(dim=0)})

if model.opt["val"].get("grids", False):
model.grids()

model.test()

if model.opt["val"].get("grids", False):
model.grids_inverse()

visuals = model.get_current_visuals()
sr_img = tensor2img([visuals["result"]])
imwrite(sr_img, save_path)


def stereo_image_inference(model, img_l, img_r, out_path):
img = torch.cat([img_l, img_r], dim=0)
model.feed_data(data={"lq": img.unsqueeze(dim=0)})

if model.opt["val"].get("grids", False):
model.grids()

model.test()

if model.opt["val"].get("grids", False):
model.grids_inverse()

visuals = model.get_current_visuals()
img_L = visuals["result"][:, :3]
img_R = visuals["result"][:, 3:]
img_L, img_R = tensor2img([img_L, img_R], rgb2bgr=False)

# save_stereo_image
h, w = img_L.shape[:2]
fig = plt.figure(figsize=(w // 40, h // 40))
ax1 = fig.add_subplot(2, 1, 1)
plt.title("NAFSSR output (Left)", fontsize=14)
ax1.axis("off")
ax1.imshow(img_L)

ax2 = fig.add_subplot(2, 1, 2)
plt.title("NAFSSR output (Right)", fontsize=14)
ax2.axis("off")
ax2.imshow(img_R)

plt.subplots_adjust(hspace=0.08)
plt.savefig(str(out_path), bbox_inches="tight", dpi=600)
2 changes: 2 additions & 0 deletions readme.md
Original file line number Diff line number Diff line change
Expand Up @@ -49,6 +49,8 @@ python setup.py develop --no_cuda_ext
* Image Deblur Colab Demo: [<a href="https://colab.research.google.com/drive/1yR2ClVuMefisH12d_srXMhHnHwwA1YmU?usp=sharing"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="google colab logo"></a>](https://colab.research.google.com/drive/1yR2ClVuMefisH12d_srXMhHnHwwA1YmU?usp=sharing)
* Stereo Image Super-Resolution Colab Demo: [<a href="https://colab.research.google.com/drive/1PkLog2imf7jCOPKq1G32SOISz0eLLJaO?usp=sharing"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="google colab logo"></a>](https://colab.research.google.com/drive/1PkLog2imf7jCOPKq1G32SOISz0eLLJaO?usp=sharing)

Try the web demo with all three tasks here: [![Replicate](https://replicate.com/megvii-research/nafnet/badge)](https://replicate.com/megvii-research/nafnet)

* Single Image Inference Demo:
* Image Denoise:
```
Expand Down

0 comments on commit f013110

Please sign in to comment.