-
Notifications
You must be signed in to change notification settings - Fork 2.6k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
add a isolated implementation of FlashDiffAttention
- Loading branch information
Showing
1 changed file
with
150 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,150 @@ | ||
# modified from https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/modules/mha.py | ||
import math | ||
|
||
import torch | ||
import torch.nn as nn | ||
from einops import rearrange | ||
|
||
try: | ||
from flash_attn import flash_attn_func, flash_attn_varlen_func | ||
except ImportError: | ||
flash_attn_func, flash_attn_varlen_func = None, None | ||
|
||
|
||
def lambda_init_fn(depth): | ||
return 0.8 - 0.6 * math.exp(-0.3 * depth) | ||
|
||
|
||
def split_heads(x): | ||
# split by num_heads, the stripe pattern is friendly to tensor parallel. | ||
x = rearrange(x, "... (H two) D -> ... H two D", two=2) | ||
x1 = x[..., 0, :] | ||
x2 = x[..., 1, :] | ||
return x1, x2 | ||
|
||
|
||
class FlashDiffAttention(nn.Module): | ||
"""Implement the scaled dot product attention with softmax. | ||
Arguments | ||
--------- | ||
head_dim: The dimension of the heads. | ||
depth: The number of heads. | ||
softmax_scale: The temperature to use for the softmax attention. | ||
(default: 1/sqrt(d_keys) where d_keys is computed at | ||
runtime) | ||
attention_dropout: The dropout rate to apply to the attention | ||
(default: 0.0) | ||
""" | ||
|
||
def __init__( | ||
self, | ||
head_dim, | ||
depth, | ||
causal=False, | ||
softmax_scale=None, | ||
attention_dropout=0.0, | ||
window_size=(-1, -1), | ||
alibi_slopes=None, | ||
deterministic=False, | ||
): | ||
super().__init__() | ||
assert flash_attn_varlen_func is not None, "FlashAttention is not installed" | ||
assert flash_attn_func is not None, "FlashAttention is not installed" | ||
self.head_dim = head_dim | ||
self.causal = causal | ||
self.softmax_scale = softmax_scale | ||
self.drop = nn.Dropout(attention_dropout) | ||
self.register_buffer("alibi_slopes", alibi_slopes, persistent=False) | ||
self.window_size = window_size | ||
self.deterministic = deterministic | ||
|
||
self.lambda_init = lambda_init_fn(depth) | ||
self.lambda_q1 = nn.Parameter(torch.zeros(self.head_dim, dtype=torch.float32).normal_(mean=0,std=0.1)) | ||
self.lambda_k1 = nn.Parameter(torch.zeros(self.head_dim, dtype=torch.float32).normal_(mean=0,std=0.1)) | ||
self.lambda_q2 = nn.Parameter(torch.zeros(self.head_dim, dtype=torch.float32).normal_(mean=0,std=0.1)) | ||
self.lambda_k2 = nn.Parameter(torch.zeros(self.head_dim, dtype=torch.float32).normal_(mean=0,std=0.1)) | ||
|
||
self.subln = nn.RMSNorm(2 * self.head_dim, eps=1e-5, elementwise_affine=False) | ||
|
||
def forward( | ||
self, | ||
q, | ||
k, | ||
v, | ||
causal=None, | ||
cu_seqlens=None, | ||
max_seqlen=None, | ||
cu_seqlens_k=None, | ||
max_seqlen_k=None, | ||
): | ||
"""Implements the multihead softmax attention. | ||
Arguments | ||
--------- | ||
q, k, v: The tensors containing the query, key, and value. | ||
If cu_seqlens is None and max_seqlen is None, then each has shape (B, S, H, D). | ||
If cu_seqlens is not None and max_seqlen is not None, then each has shape | ||
(total, H, D), where total is the sum of the sequence lengths in the batch. | ||
causal: if passed, will override self.causal | ||
cu_seqlens: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths | ||
of the sequences in the batch, used to index into qkv. | ||
max_seqlen: int. Maximum sequence length in the batch. | ||
Returns: | ||
-------- | ||
out: (total, H, D) if cu_seqlens is not None and max_seqlen is not None, | ||
else (B, S, H, D). | ||
""" | ||
assert q.dtype in [torch.float16, torch.bfloat16] | ||
assert q.is_cuda and k.is_cuda and v.is_cuda | ||
causal = self.causal if causal is None else causal | ||
unpadded = cu_seqlens is not None | ||
if self.alibi_slopes is not None: | ||
self.alibi_slopes = self.alibi_slopes.to(torch.float32) | ||
|
||
q1, q2 = split_heads(q) | ||
k1, k2 = split_heads(k) | ||
v1, v2 = split_heads(v) | ||
|
||
kwargs = { | ||
"dropout_p": self.drop.p if self.training else 0.0, | ||
"softmax_scale": self.softmax_scale, | ||
"causal": causal, | ||
"alibi_slopes": self.alibi_slopes, | ||
"window_size": self.window_size, | ||
"deterministic": self.deterministic, | ||
} | ||
|
||
if unpadded: | ||
assert cu_seqlens.dtype == torch.int32 | ||
assert max_seqlen is not None | ||
assert isinstance(max_seqlen, int) | ||
assert cu_seqlens_k is not None | ||
assert cu_seqlens_k.dtype == torch.int32 | ||
assert max_seqlen_k is not None | ||
assert isinstance(max_seqlen_k, int) | ||
|
||
kwargs.update({ | ||
"cu_seqlens_q": cu_seqlens, | ||
"max_seqlen_q": max_seqlen, | ||
"cu_seqlens_k": cu_seqlens_k, | ||
"max_seqlen_k": max_seqlen_k, | ||
}) | ||
attn_func = flash_attn_varlen_func | ||
else: | ||
attn_func = flash_attn_func | ||
|
||
attn11 = attn_func(q1, k1, v1, **kwargs) | ||
attn12 = attn_func(q1, k1, v2, **kwargs) | ||
attn1 = torch.cat([attn11, attn12], dim=-1) | ||
attn21 = attn_func(q2, k2, v1, **kwargs) | ||
attn22 = attn_func(q2, k2, v2, **kwargs) | ||
attn2 = torch.cat([attn21, attn22], dim=-1) | ||
|
||
lambda_1 = torch.exp(torch.sum(self.lambda_q1 * self.lambda_k1, dim=-1).float()).type_as(q) | ||
lambda_2 = torch.exp(torch.sum(self.lambda_q2 * self.lambda_k2, dim=-1).float()).type_as(q) | ||
lambda_full = lambda_1 - lambda_2 + self.lambda_init | ||
attn = attn1 - lambda_full * attn2 | ||
attn = self.subln(attn) | ||
attn = attn * (1 - self.lambda_init) | ||
# reshape back to 2 * num_head | ||
attn = rearrange(attn, "... H (two D) -> ... (H two) D", two=2) | ||
return attn |