Skip to content

Commit

Permalink
first pass CLM #2
Browse files Browse the repository at this point in the history
  • Loading branch information
gerritlensink committed Apr 4, 2021
1 parent 06e29c4 commit a2ed4c5
Showing 1 changed file with 102 additions and 0 deletions.
102 changes: 102 additions & 0 deletions notebooks/CLM_gl.Rmd
Original file line number Diff line number Diff line change
@@ -0,0 +1,102 @@
---
title: "CLM_gl"
output: pdf_document
---

```{r}
install.packages(ggfortify)
knitr::opts_chunk$set(echo = TRUE)
library(dplyr)
library(tidyverse)
library(patchwork)
library(stargazer)
library(sandwich)
setwd('.')
minimal_theme_GL <- theme(
axis.text = element_text(color="#959292"),
axis.line = element_line(color = "#959292", size = .25),
axis.title = element_text(color="#959292"),
axis.ticks = element_line(color = "#959292", size = .25),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
plot.title = element_text(color="#959292", size = 11),
plot.subtitle = element_text(color="#959292"),
legend.text = element_text(color="#959292"),
legend.title = element_blank(),
# legend.justification=c(0,1),
# legend.position=c(0,1),
legend.direction = 'vertical')
```

```{r}
data <- read.csv('../data/processed/processed_data.csv')
```

## Set the model
```{r model two}
model_two <- data %>%
lm(avg_retail_rec_change ~
at_home_order + # Primary variable of interest
quarantine_length + mask_order + # Other covid policies/happenings that may confound
population_density + new_cases_per_100k, # State level effects that may confound
.)
```

## CLM #2: Linear Conditional Expectation

Since this is a higher-dimensional model, we are choosing to test for Linear Conditional Expectation by comparing predictions versus residuals.
```{r}
# Augment data with predictions and residuals
data <- data %>%
# drop_na() %>%
mutate(
predictions = predict(model_two),
residuals = resid(model_two)
)
plot(model_two)
data %>%
ggplot(aes(predictions, residuals)) +
geom_point() +
minimal_theme_GL +
geom_hline(yintercept = 0, color = "red") +
stat_smooth() + labs(title = "Predictions v. Residuals - Model Two") #+
# xlim(-60,-5)
## Plot Each Variable
q_length_resids <- data %>%
ggplot(aes(quarantine_length, residuals)) +
geom_point() +
stat_smooth()
pop_density_resids <- data %>%
ggplot(aes(population_density, residuals)) +
geom_point() +
stat_smooth()
cases_resids <- data %>%
ggplot(aes(new_cases_per_100k, residuals)) +
geom_point() +
stat_smooth()
at_home_resids <- data %>%
ggplot(aes(at_home_order, residuals)) +
geom_point() +
stat_smooth()
mask_resids <- data %>%
ggplot(aes(mask_order, residuals)) +
geom_point() +
stat_smooth()
q_length_resids
pop_density_resids
cases_resids
at_home_resids
mask_resids
```

0 comments on commit a2ed4c5

Please sign in to comment.