44k products with multiple category labels, descriptions and high-res images. Dataset Link | | Kaggle Notebook
Epoch | Training Loss | Validation Loss | Accuracy |
---|---|---|---|
1 | 0.082200 | 0.059544 | 0.992506 |
2 | 0.042800 | 0.035637 | 0.995316 |
3 | 0.033300 | 0.030343 | 0.995472 |
>>> trainer.train()
# Evaluate the model on the test set
>>> outputs = trainer.predict(test_data)
>>> outputs.metrics
[{'test_loss': 0.03034268133342266, 'test_accuracy': 0.9954722872755659, 'test_runtime': 102.7551}]
Flower Images for Classification (1k images for each flower types) Dataset Link | Kaggle Notebook
Epoch | Training Loss | Validation Loss | Accuracy |
---|---|---|---|
1 | No log | 0.349625 | 0.974667 |
2 | No log | 0.184932 | 0.984000 |
3 | No log | 0.137928 | 0.989333 |
4 | 0.369800 | 0.122166 | 0.988000 |
5 | 0.369800 | 0.117171 | 0.988000 |
>>> trainer.train()
# Evaluate the model on the test set
>>> outputs = trainer.predict(test_data)
>>> outputs.metrics
[{'test_loss': 0.13792766630, 'test_accuracy': 0.98933333, 'test_runtime': 12.5379}]
It conists of MRI scans of two classes: NO - no tumor, encoded as 0 YES - tumor, encoded as 1 Dataset Link | Kaggle Notebook
Epoch | Training Loss | Validation Loss | Accuracy |
---|---|---|---|
1 | No log | 0.533956 | 0.769231 |
2 | No log | 0.454096 | 0.876923 |
3 | No log | 0.389601 | 0.969231 |
4 | No log | 0.347400 | 0.984615 |
5 | No log | 0.336078 | 0.984615 |
>>> trainer.train()
# Evaluate the model on the test set
>>> outputs = trainer.predict(test_data)
>>> outputs.metrics
[{'test_loss': 0.347400099, 'test_accuracy': 0.984615384, 'test_runtime': 0.8473}]