forked from aizvorski/video-quality
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
88 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,88 @@ | ||
""" | ||
Video Quality Metrics | ||
Copyright (c) 2015 Alex Izvorski <[email protected]> | ||
This program is free software: you can redistribute it and/or modify | ||
it under the terms of the GNU General Public License as published by | ||
the Free Software Foundation, either version 3 of the License, or | ||
(at your option) any later version. | ||
This program is distributed in the hope that it will be useful, | ||
but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
GNU General Public License for more details. | ||
You should have received a copy of the GNU General Public License | ||
along with this program. If not, see <http://www.gnu.org/licenses/>. | ||
""" | ||
|
||
""" | ||
RECO: Relative Polar Edge Coherence | ||
An excellent reduced-reference metric (need just one number from the source image to compare with). | ||
This implementation follows closely the notation and terminology in the original paper, except that some of the kernels are reflected | ||
(probably due to y axis pointing down rather than up in images). | ||
Cite: | ||
Baroncini, V., Capodiferro, L., Di Claudio, E. D., & Jacovitti, G. (2009). The polar edge coherence: | ||
a quasi blind metric for video quality assessment. EUSIPCO 2009, Glasgow, 564-568. | ||
""" | ||
|
||
import numpy | ||
from numpy import sqrt, pi | ||
import scipy.ndimage.filters | ||
|
||
def Laguerre_Gauss_Circular_Harmonic_3_0(size, sigma): | ||
x = numpy.linspace(-size/2.0, size/2.0, size) | ||
y = numpy.linspace(-size/2.0, size/2.0, size) | ||
xx, yy = numpy.meshgrid(x, y) | ||
|
||
r = numpy.sqrt(xx*xx + yy*yy) | ||
gamma = numpy.arctan2(yy, xx) | ||
l30 = - (1/6.0) * (1 / (sigma * sqrt(pi))) * numpy.exp( -r*r / (2*sigma*sigma)) * (sqrt(r*r/(sigma*sigma)) ** 3) * numpy.exp( -1j * 3 * gamma ) | ||
return l30 | ||
|
||
def Laguerre_Gauss_Circular_Harmonic_1_0(size, sigma): | ||
x = numpy.linspace(-size/2.0, size/2.0, size) | ||
y = numpy.linspace(-size/2.0, size/2.0, size) | ||
xx, yy = numpy.meshgrid(x, y) | ||
|
||
r = numpy.sqrt(xx*xx + yy*yy) | ||
gamma = numpy.arctan2(yy, xx) | ||
l10 = - (1 / (sigma * sqrt(pi))) * numpy.exp( -r*r / (2*sigma*sigma)) * sqrt(r*r/(sigma*sigma)) * numpy.exp( -1j * gamma ) | ||
return l10 | ||
|
||
""" | ||
Polar edge coherence map | ||
Same size as source image | ||
""" | ||
def pec(img): | ||
# TODO scale parameter should depend on resolution | ||
l10 = Laguerre_Gauss_Circular_Harmonic_1_0(17, 2) | ||
l30 = Laguerre_Gauss_Circular_Harmonic_3_0(17, 2) | ||
y10 = scipy.ndimage.filters.convolve(img, numpy.real(l10)) + 1j * scipy.ndimage.filters.convolve(img, numpy.imag(l10)) | ||
y30 = scipy.ndimage.filters.convolve(img, numpy.real(l30)) + 1j * scipy.ndimage.filters.convolve(img, numpy.imag(l30)) | ||
pec_map = - (numpy.absolute(y30) / numpy.absolute(y10)) * numpy.cos( numpy.angle(y30) - 3 * numpy.angle(y10) ) | ||
return pec_map | ||
|
||
""" | ||
Edge coherence metric | ||
Just one number summarizing typical edge coherence in this image. | ||
""" | ||
def eco(img): | ||
l10 = Laguerre_Gauss_Circular_Harmonic_1_0(17, 2) | ||
l30 = Laguerre_Gauss_Circular_Harmonic_3_0(17, 2) | ||
y10 = scipy.ndimage.filters.convolve(img, numpy.real(l10)) + 1j * scipy.ndimage.filters.convolve(img, numpy.imag(l10)) | ||
y30 = scipy.ndimage.filters.convolve(img, numpy.real(l30)) + 1j * scipy.ndimage.filters.convolve(img, numpy.imag(l30)) | ||
eco = numpy.sum( - (numpy.absolute(y30) * numpy.absolute(y10)) * numpy.cos( numpy.angle(y30) - 3 * numpy.angle(y10) ) ) | ||
return eco | ||
|
||
""" | ||
Relative edge coherence | ||
Ratio of ECO | ||
""" | ||
def reco(img1, img2): | ||
C = 1 # TODO what is a good value? | ||
return (eco(img2) + C) / (eco(img1) + C) | ||
|